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Mitochondria are important generators of energy, providing ATP through oxidative phosphorylation.
However, mitochondria also monitor complex information from the environment and intracellular milieu,
including the presence or absence of growth factors, oxygen, reactive oxygen species, and DNA damage.
Mitochondria have been implicated in the loss of cells in various cardiac pathologies, including
ischaemia/reperfusion injury, cardiomyopathy, and congestive heart failure. The release of factors such
as cytochrome ¢, Smac, Omi/Htr2A, and AIF from mitochondria serves to activate a highly complex and

regulated cell death program. Furthermore, mitochondrial calcium overload might trigger opening of the
mitochondrial permeability transition pore, causing uncoupling of oxidative phosphorylation, swelling of
the mitochondria due to influx of water, and rupture of the mitochondrial outer membrane. In this
review, we discuss the role of mitochondria in the control of cell death in cardiac myocytes.

1. Introduction

Mitochondria play critical roles in both the life and death of
cardiac myocytes. In healthy cells, their primary function is
to meet the high energy demand of the beating heart by pro-
viding ATP through oxidative phosphorylation. Mitochondria
occupy a large portion of each myocyte and are located
between the myofibrils and just below the sarcolemma.
The strategic positioning and abundance of mitochondria
ensure a highly efficient localized ATP delivery system to
support contraction, metabolism, and ion homeostasis."
However, mitochondria are also important regulators of
cell death, responding to a wide variety of stress signals,
including loss of growth factors, hypoxia, oxidative stress,
and DNA damage. The switch to a cell death program can
be mediated by opening of the mitochondrial permeability
transition pore (mPTP) in the inner mitochondrial mem-
brane, causing collapse of the membrane potential and
swelling of the mitochondria,? often culminating in necrotic
cell death, or permeabilization of the mitochondrial outer
membrane (MOM) with release of proapoptotic proteins
such as cytochrome ¢, Smac/Diablo, and apoptosis-inducing
factor (AIF) to activate an energy-dependent apoptosis.> It is
important to remember that both forms of cell death are
highly regulated and activated by mitochondria.

During apoptosis, the cell activates a signalling cascade
which leads to cell death without triggering an inflammatory
response. In contrast, necrosis is characterized by swelling
of the cell and disruption of the plasma membrane. The
resulting release of the cell’s content into the extracellular
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space triggers an inflammatory response which can cause
further damage to surrounding cells.* Both processes have
been implicated in loss of myocardial cells in pathologies
such as ischaemia/reperfusion (I/R), cardiomyopathy, and
congestive heart failure. This review discusses the mechan-
ism(s) of mitochondrial dysfunction and how malfunctioning
mitochondria might contribute to loss of cardiac myocytes.

2. Mitochondria and reactive oxygen species

Mitochondria are a major source of reactive oxygen species
(ROS), which are a byproduct of mitochondrial electron
transfer activity. As much as 0.2-2% of the molecular
oxygen consumed by mitochondria during respiration is con-
verted to superoxide primarily by Complexes | and 11.°”7
Molecular oxygen (0,) is highly electrophilic and superoxide
production occurs when O, captures an electron from
Complex I8 or from the ubisemiquinone located in Complex
I11.° At higher oxygen concentrations, such as during reperfu-
sion, diminished availability of reduced co-factors of the
respiratory chain will increase mitochondrial ROS formation.
In addition, a reduction in Complex | activity was shown to
result in elevated levels of superoxide.'® The density of
mitochondria in cardiac myocytes and the high rate of oxi-
dative phosphorylation can result in generation of significant
amounts of superoxide. Normally, superoxide is detoxified
by the combined activity of the mitochondrial antioxidant
enzymes manganese superoxide dismutase (MnSOD), cata-
lase, and glutathione peroxidase (GPx).'"'? Superoxide
anions are quickly dismuted to hydrogen peroxide by
MnSOD, which is converted to water by catalase and GPx.
Oxidative stress occurs when excess ROS are generated
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that cannot be adequately countered by the antioxidant
systems. Mice deficient in MnSOD develop normally but die
within the first 10 days of life with cardiomyopathy.'> More-
over, an increase in superoxide caused by partial inhibition
of SOD resulted in hypertrophy and apoptosis in isolated
cardiac myocytes.™ These studies demonstrate the import-
ance of SOD in the regulation of superoxide formed as a
byproduct of oxidative phosphorylation.

Production of ROS at levels that exceed the detoxification
capacity results in oxidative modification of mitochondrial
proteins, lipids, and mtDNA, culminating in mitochondrial
dysfunction and cell death. Oxidative stress has been associ-
ated with loss of cells in heart failure, I/R injury, and
doxorubicin-induced cardiomyopathy, whereas reducing
ROS production has been shown to be cardioprotective.
For instance, increased generation of ROS was associated
with mitochondrial dysfunction in failing hearts after myo-
cardial infarction where mitochondria exhibited increased
lipid peroxidation, decreased mtDNA copy number, and a
reduced oxidative capacity due to lower activity of electron
transfer enzymes." In addition, development of heart
failure was shown to be associated with decreased antioxi-
dant capacity and increased oxidative stress. For instance,
SOD activity was decreased in an animal model of congestive
heart failure,’ and catalase and GPx activities were
reduced by 50% after myocardial infarction, whereas lipid
peroxidation in the heart was increased by 50%.'” Moreover,
transgenic mice overexpressing either MnSOD or the cytoso-
lic Cu/ZnSOD had reduced infarct size compared to wild
type,'®' and treatment with a ROS scavenger protected
against hypoxia/reoxygenation and hydrogen peroxide
treatment in isolated cardiac myocytes.?’ Doxorubicin, an
anthracycline, is an effective anti-cancer drug known to
cause severe cardiac toxicity. The toxicity is thought to be
mediated through the generation of the ROS and impairment
of mitochondrial function in cardiac myocytes. In support of
this, antioxidants can protect isolated cardiac myocytes and
intact hearts from anthracyline toxicity,2'2* and transgenic
mice overexpressing MnSOD had less mitochondrial damage
at the ultrastructural level and reduced serum levels of
creatine kinase and lactate dehydrogenase than wild type
littermates after doxorubicin treatment.?* Similarly, Xiong
et al.?® found that doxorubicin treatment led to uncoupling
of electron transfer and oxidative phosphorylation in mito-
chondria and that mice with cardiac overexpression of
Gpx1 were more resistant than wild type mice to acute
cardiac toxicity of doxorubicin. These studies suggest that
production of ROS and damage to mitochondria play an
important role in doxorubicin-mediated cardiac toxicity.

3. Reactive oxygen species-induced reactive
oxygen species release (RIRR)

ROS produced initially in mitochondria have been shown to
act in a positive feedback, where mitochondria can
respond to elevated ROS by increasing their own ROS pro-
duction in a process known as ROS-induced ROS release
(RIRR). Zorov et al.?® initially discovered that ROS pro-
duction in adult cardiac myocytes proceeded in two distinct
phases; an initial slow increase in ROS production induced by
photoactivation of mitochondrial dyes was followed by a
second burst of ROS originating from the electron transport

chain (ETC) occuring simultanously with dissipation of mito-
chondrial membrane potential (AV¥,,). Two different path-
ways of RIRR have been described. The first pathway of
RIRR is dependent on the mPTP, where the initial enhanced
ROS leads to opening of the mPTP and depolarization of
mitochondria, yielding a short-lived burst of ROS originating
from the mitochondrial ETC. Bongkrekic acid, an inhibitor of
the mPTP, was shown to inhibit both AW¥,, collapse and the
second mitochondrial ROS burst.?® More recently, a second
pathway of RIRR was described by O’Rourke and colleagues.
This type of RIRR occurs through a mechanism involving
opening of the inner membrane anion channel (IMAC)
which is regulated by the mitochondrial benzodiazepine
receptor (mBzR). They found that increased ROS in the mito-
chondria triggered opening of the IMAC, resulting in a brief
increase in ETC-derived ROS. The RIRR was inhibited by
ligands of the mBzR, but not by mPTP inhibitors or Ca?*
overload, suggesting that the RIRR occurred through a separ-
ate pathway that was independent of the mPTP.%’

Intracellular generation of mitochondrial ROS by
both types of RIRR causes collapse of the AY¥,, and destabi-
lization of the action potential, and is emerging as an
important mediator of I/R injury. Several independent
studies have demonstrated that RIRR is linked to hypoxia/
reoxygenation-activated pathways of cell death via the
mPTP. Cyclosporine A (CsA), a classic inhibitor of the
mPTP, and sanglifehrin A, a recently described specific
inhibitor of the mPTP, reduced infarct size following I/R in
rat hearts?® and reduced the responsiveness of the mPTP
to photo-triggering via confocal imaging of the cardiac
myocyte.??3% |n addition, 4’-chlorodiazepam, an antagonist
of the mBzR, shortened action potential duration and pre-
vented arrhythmias during reperfusion, whereas the high
affinity agonist, FGIN-1-27, amplified myocardial dysfunc-
tion.3! This suggests that the second pathway of RIRR par-
ticipates in I/R-induced myocardial arrhythmias.

4. Mitochondria and calcium

Cardiac mitochondria also play an important role in regulat-
ing calcium homeostasis and can act as a sponge to buffer
Ca’". Since elevated [Ca**] may be deleterious, it is necess-
ary to maintain a physiologic Ca?* concentration in the
cytoplasm; much of the cellular Ca** is stored in the sarco-
plasmic/endoplasmic reticulum (SR/ER). Mitochondria have
been shown to be positioned near Ca’*-release sites on
the SR/ER and can capture a substantial amount of the
released Ca®".3? The ability of mitochondria to accumulate
Ca®* helps to prevent the level of calcium in the cytosol
from becoming too high and to prevent SR/ER depletion by
recycling Ca** to the SR/ER.** Mitochondrial calcium can
be stored as calcium phosphate precipitates, permitting
sequestration of surprisingly large amounts of Ca?*.3* Mito-
chondrial Ca?" homeostasis also regulates energy metab-
olism to synchronize ATP generation with cell function. For
instance, uptake of Ca*" results in the activation of three
dehydrogenases in the mitochondrial matrix.>*> This causes
an increase in mitochondrial NADH/NAD™ ratio which may
result in increased energy available for mitochondrial func-
tions. In addition, matrix Ca** has been suggested to acti-
vate ATP synthesis through a direct effect on
FoF1-ATPase.3¢ Mitochondrial matrix [Ca®*] is controlled by
a Ca’* uniporter channel for influx and by a Na*/Ca?*
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exchanger (NCX) for efflux.3” The activity of NCX saturates
as mitochondrial matrix [Ca?"] increases, whereas the uni-
porter acts as a channel and is not saturated with increasing
[Ca**]. As a result, the [Ca®"] increases in the matrix and
beyond a certain threshold, the mitochondria can no
longer regulate matrix [Ca®*], resulting in mitochondrial
overload.?” If the mitochondrial Ca?* load is substantially
increased, Ca®" can promote opening of the mPTP thereby
triggering cell death.? However, the role of Ca’" as a
mediator of mPTP opening in cardiac myocytes has recently
come into question. Most experiments demonstrating mPTP
opening in response to Ca’* has been done in vitro using iso-
lated mitochondria, but Juhaszova et al.?’ found that
increased uptake of Ca?* into mitochondria did not result
in mPTP opening in isolated cardiac myocytes. Similarly,
another study using a model of simulated I/R found that
mPTP opening during reperfusion was not dependent on
mitochondrial uptake of Ca** during ischaemia.*® Clearly,
the role of Ca** in mediating mPTP opening needs to be
further investigated in vivo.

It is well established that myocardial I/R injury is
accompanied by mitochondrial Ca?* overload which contrib-
utes to mitochondrial dysfunction and cell death. During
ischaemia, there is a drop in ATP/ADP and a build-up of
lactic acid, with a consequent drop in intracellular pH. In
an attempt to restore the pH, the cell utilizes the Na*/H*
exchanger, but this results in loading of the cell with Na™.
This Na' cannot be pumped out via the Na*/K*-ATPase
due to compromised ATP levels. Consequently, the plasma
membrane NCX which normally extrudes Ca®" operates in
reverse and the cell becomes loaded with Ca?*.3® Upon
reperfusion, Ca’* re-enters the mitochondria and conse-
quently produces mitochondrial Ca?* overload, which may
lead to cell death. Strategies that limit mitochondrial Ca**
accumulation have significant beneficial effects on cardiac
function following I/R. For instance, treatment of hearts
with ruthenium red (RR) or Ru360, inhibitors of the Ca** uni-
porter, improved functional recovery and reduced infarct
size in hearts subjected to I/R.“®*' In addition, isolated
heart mitochondria were more resistant to Ca®*-induced
swelling in the presence of Ru360 or RR, suggesting that
pore opening during Ca?* overload is modulated by activity
of the Ca?" uniporter.*® Other studies have demonstrated
the beneficial effects of plasma membrane NCX inhibitors
on myocardial I/R injury. For instance, KB-R7943 or
SEA0400, two different inhibitors of the NCX, reduced
infarct size and improved post-ischaemic recovery of func-
tion,*** whereas enhancing expression of NCX in the
heart increased susceptibility to I/R injury.*

5. Mitochondrial permeability transition
pore (mPTP)

The mPTP is a voltage-dependent, high-conductance
channel with a diameter of 3 nm allowing for rapid equili-
bration of ions and water, as well as passage of molecules
up to 1.5kDa.”> The mPTP is regulated by cyclophilin D
(CycD) in the inner mitochondrial membrane, and is import-
ant for mPTP function.*® Various studies have implicated
VDAC and ANT as elements of the mPTP, yet mitochondria
from knockouts for multiple isoforms of VDAC or ANT are
still able to demonstrate pore opening albeit with higher

thresholds.*’**® Other studies have revealed a role for
Complex | in mPTP function.**>® Under normal conditions,
the inner mitochondrial membrane is impermeable to all
but a few ions and metabolites for which specific transport
mechanisms are present. This tight regulation is necessary
for mitochondria to maintain a pH gradient and membrane
potential which drives oxidative phosphorylation. Opening
of the pore causes collapse of the proton gradient and elec-
trical potential across the inner mitochondrial membrane,
leading to uncoupling of oxidative phosphorylation. The
high colloid osmotic pressure in the matrix causes influx of
water, and swelling of the matrix; whereas the inner mito-
chondrial membrane can expand through cristae remodel-
ling, the outer mitochondrial membrane is unable to
expand resulting in rupture and release of cytochrome ¢
and other pro-apoptotic proteins into the cytosol.

Many studies have found that opening of the mPTP occurs
during I/R. During ischaemia, depletion of adenine nucleo-
tides and accumulation of inorganic phosphate (Pi) sensitizes
the mPTP to opening. The mPTP is regulated by pH, and the
low pH during ischaemia prevents opening of the pore. Upon
reperfusion, the mitochondria resume respiration and gen-
erate a membrane potential, resulting in an increase in
the production of ROS. Reperfusion also triggers rapid
accumulation of Ca*" within the mitochondria. Within a
few minutes of reperfusion, the pH returns to normal and
mPTP opening occurs. Halestrap et al.>' demonstrated
that mPTP opening did not take place during ischaemia
but occurred approximately 2 min into reperfusion.
Opening of the mPTP contributes to mitochondrial dysfunc-
tion in cardiac myocytes and inhibition of pore opening
is cardioprotective. For instance, inhibitors of the mPTP
protected against hypoxia/re-oxygenation-mediated cell
death in isolated cardiac myocytes,”>* and reduced
infarct size in the ex vivo model of 1/R.%8:3%>* Treatments
that reduce mPTP opening, such as decreasing oxidative
stress with free radical scavengers, and maintaining a
lower pH during reperfusion are also cardioprotective.®’
Moreover, CycD deficient mice, whose mPTP is more resist-
ant to Ca?*- and oxidative stress-induced opening, had
reduced injury after myocardial I/R compared to wild-type
litter mates.*® Interestingly, cells lacking CycD were still
sensitive to apoptotic stimuli, suggesting that mPTP
opening is not required for induction of apoptosis via the
mitochondrial pathway.*® In contrast, cardiac mitochondria
from transgenic mice overexpressing CycD in the heart dis-
played a lower threshold for mPTP opening in vitro, and
hearts displayed increased signs of apoptosis, hypertrophy,
and decreased cardiac function.*® Moreover, the mPTP has
been shown to contribute to loss of myocytes during
progression to heart failure. For instance, transgenic mice
overexpressing the alpha subunit of Gq develop cardiac
hypertrophy and subsequent lethal cardiomyopathy.®®
Adams et al.>” reported that overexpression of a constitu-
tively active form of Ggqa in isolated cardiac myocytes
caused mitochondrial dysfunction and cell death, which
was prevented in the presence of bongkrekic acid. These
studies demonstrate that opening of the mPTP contributes
to loss of cardiac myocytes in various cardiovascular
diseases.

Reduced mPTP opening has also been suggested to play a
role in pre- and post-conditioning of the heart brief, i.e.
periods of ischaemia performed at the prior to ischaemia
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or at onset of reperfusion, respectively. Pre-conditioning
was shown to be associated with reduced mPTP opening in
Langendorff-perfused hearts.’® Studies using isolated
cardiac myocytes and mitochondria have implicated the
inhibition of the mPTP in both calcium- and diazoxide-
mediated pre-conditioning.>>%¢° Similarly, mPTP inhibition
has been suggested to be responsible for the protection pro-
vided by post-conditioning,®' which agrees with the study by
Hausenloy et al.>® who found that CsA treatment at the start
of reperfusion reduced infarct size.

6. Mitochondrial mediators of
cardiac protection

The mitochondrial ATP-sensitive K™ (mKup) channel plays a
central role in mediating protection in ischaemic pre-
conditioning (IPC). Pharmacological activation of this
channel protects against I/R injury, whereas inhibition of
the mKap prevents the protective effects of IPC.%?
Opening of the mK4rp channel has been reported to reduce
mitochondrial Ca?t uptake and to inhibit mPTP
opening,®®%3 as well as to increase ROS production by the
ETC.%*® Whereas excess levels of ROS triggers cell death,
lower levels of ROS produced during brief periods of ischae-
mia and reperfusion have been shown to play a role in IPC.%¢
The exact mechanism for opening of the mKp during pre-
conditioning is still under intense investigation. Recently,
it was demonstrated that mK,rp and PKCe directly interact
in the mitochondrial inner membrane and that PKCe is
required for the opening of the mKrp.®” Previous studies
have found that activation and translocation of PKCe to
the mitochondria are important for pre-conditioning.®®7°
Gray et al.”' demonstrated that treatment with a PKCe
selective inhibitor abolished the protective effects of pre-
conditioning. In addition, transgenic mice overexpressing
PKCs in the heart had reduced infarct size after myocardial
I/R,”% and PCKe knockout mice did not retain the protective
effects of pre-conditioning.”> These studies suggest that
PKCe mediates protection of mitochondria in the myocar-
dium by activation of the mKxrp.

Activation of the PI 3-kinase/Akt signalling pathway has
also been demonstrated to provide cardiac protection
against various stressors by preserving mitochondrial
integrity and function. Pl 3-kinase signalling has been
shown to provide protection against I/R injury during pre-
conditioning’ and Akt activation has been shown to
decrease apoptosis, as well as to reduce infarct size and
to improve cardiac function after I/R.”> Furthermore,
adenovirally infecting mouse’® or rat hearts’” with constitu-
tively active Akt gene constructs confers protection against
I/R injury. Akt has been shown to protect mitochondrial
integrity and inhibit cytochrome c release following an
apoptotic stimulus.”®% However, the exact mechanism for
Akt-mediated cardioprotection is still unclear and it
appears that Akt acts on multiple target to provide its pro-
tective effects. For instance, preservation of mitochondrial
integrity and function by Akt has been shown to be depen-
dent on the presence of glucose and hexokinase. Akt was
shown to preserve mitochondrial membrane potential in
response to growth factor deprivation by increasing
glucose transporter expression and glytolytic activity result-
ing in greater substrate availability for mitochondrial

t.8" Akt also elevated mitochondrial hexo-

78 In

electron transpor
kinase association and activity at the mitochondria.
addition, Akt has been shown to provide protection by phos-
phorylation and inactivation of the BH3-only protein Bad®?
and prevention of Bax translocation to the mitochondria,®>
as well as induction of anti-apoptotic Bcl-2 proteins.’48°
Akt has also been shown to phoshorylate and inactivate gly-
cogen synthase kinase-3p (GSK-3B),% and inhibition of
GSK-3pB prevents opening of the mPTP.2% GSK-3p is thought
to contribute to I/R-mediated cell death,®’® and has
been shown to be inhibited by pre-conditioning.®-8°

7. Mitochondria and Bcl-2 family proteins

The Bcl-2 family proteins are important regulators of the
mitochondrial apoptotic pathway. This family is composed
of both pro- and anti-apoptotic proteins that share up to
four conserved regions known as Bcl-2 homology (BH)
domains. Anti-apoptotic members such as Bcl-2 and Bcl-X_
contain all four subtypes of BH domains, and promote cell
survival by inhibiting the function of the pro-apoptotic
Bcl-2 proteins. The pro-apoptotic members can be separ-
ated into two structurally distinct subfamilies. The ‘multido-
main’ proteins (Bax and Bak) share three BH regions and lack
the BH4 domain. They are structurally similar to the anti-
apoptotic proteins.’®®! In contrast, ‘BH3-only’ proteins
which include Bid, Bnip3, Nix/Bnip3L, and Puma, share
only the BH3 domain and are structurally diverse.’? The
BH3-only proteins function as death signal sensors in the
cell and play a major role in transducing signals from the
cytosol to the mitochondria. All BH3-only proteins initiate
cell death through the activation of Bax and Bak, and
studies using cells derived from knock-out mice lacking
both Bax and Bak have demonstrated that Bax and Bak are
essential for initiation of cell death through the mitochon-
drial pathway. In response to an apoptotic stimulus,
BH3-only proteins bind to and neutralize the anti-apoptotic
Bcl-2 proteins, thereby releasing Bax and Bak. Certain
BH3-only proteins, such as tBid, can directly interact with
the pro-apoptotic Bax and Bak to trigger apoptosis. In
healthy cells, Bax is localized in the cytosol and upon a
cell death signal, Bax rapidly translocates to the mitochon-
dria, whereas Bak is already present in the mitochondria as
an integral membrane protein. Although the precise mech-
anisms of membrane permeabilization are unclear, it has
been proposed that it can result from a conformational
change of Bax or Bak, their full insertion into mitochondrial
membranes as homo-oligomerized multimers, and formation
of giant protein-permeable pores.®?

The Bcl-2 family proteins play a central role in regulating
apoptosis in the heart. The anti-apoptotic Bcl-2 proteins
provide protection of mitochondria by acting on multiple
targets. For instance, Bcl-2 has been shown to prevent
permeabilization of the outer mitochondrial membrane by
inhibiting activation of Bax/Bak,’* and to increase the
calcium threshold for mPTP opening in heart mitochondria
by blocking opening of the pore.®® Moreover, transgenic
mice overexpressing Bcl-2 in the heart had fewer apoptotic
cells, reduced infarct size and improved recovery of cardiac
function after 1/R.%¢"%8 Mice null for desmin develop cardio-
myopathy characterized by ultrastructural abnormalities in
mitochondria and extensive cell death, but overexpression
of Bcl-2 in these hearts corrected the mitochondrial
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defects and improved cardiac function.’® During ischaemia,
electron transport and mitochondrial generation of ATP are
inhibited, and the F;Fy-ATPase runs in reverse, consuming
glycolytically generated ATP.'%1%" |nterestingly, transgenic
mice overexpressing Bcl-2 in the heart had a decreased
rate in decline of ATP during ischaemia as well as reduced
acidification, suggesting that Bcl-2 provides protection by
inhibiting consumption of glycolytically generated ATP by
the F,Fy-ATPase.’® Moreover, elevated expression of Bcl-X,
by adenoviral gene transfer inhibited Bax translocation
from the cytosol to the mitochondria, reduced cytochrome
¢ release from mitochondria and decreased apoptosis after
I/R."2 Similarly, the BH4 domain of Bcl-X, has been shown
to be necessary and sufficient for protection against mito-
chondrial dysfunction and apoptosis and recently was
shown to interact with truncated Bid.'®® Perfusion of
hearts with this BH4 peptide linked to a protein transduction
domain (TAT-BH4) reduced infarct size and creatine kinase
release after I/R."% These studies demonstrate a cardiopro-
tective role for the anti-apoptotic Bcl-2 proteins in prevent-
ing mitochondrial dysfunction and cell death in cardiac
myocytes in response to various stressors.

Many of the pro-apoptotic Bcl-2 proteins have also been
implicated in the pathogenesis of various cardiac diseases
including myocardial hypertrophy, infarction, and heart
failure. For instance, chronic hypoxia, stretch, and chronic
pressure overload in rat hearts correlated with increased
Bax and decreased Bcl-2 levels accompanied by mitochon-
drial dysfunction and cell death.'%'% Moreover, Bax has
been reported to be activated in cardiac cells in response
to oxidative stress'%” and during ischaemia.'®® Hearts from
Bax deficient mice had reduced mitochondrial damage and
decreased infarct size after I/R compared to wild type,
implicating Bax as a major player of mitochondrial dysfunc-
tion in 1/R."® Among the BH3-only proteins, Bid, Puma,
Bnip3, and Nix/Bnip3L have been implicated in cardiac
myocyte death. For instance, Bid has been reported to be
subjected to proteolytic cleavage during myocardial I/R.
The activated truncated Bid (tBid) then translocates to the
mitochondria causing activation of Bax/Bak and release of
cytochrome c into the cytosol.'®*"1%""" pyma was upregu-
lated in cardiac myocytes in response to hypoxia/reoxygena-
tion, whereas Puma knockout mice had reduced infarct size
and improved cardiac function after I/R."'? Moreover, Bnip3
and Nix/Bnip3L have been associated with mitochondrial
dysfunction and cell death in the heart. Bnip3 has been
shown to contribute to I/R injury via activation of
Bax''>""* and was found to be upregulated in failing
hearts,""> whereas Nix/Bnip3L has been implicated in
cardiac hypertrophy and development of cardiomyopathy.'®

8. Consequences of mitochondrial
permeabilization

Permeabilization of the MOM and loss of AW¥,, are universal
features of cell death and are generally considered as the
‘point of no return’ in the events leading to cell death.""”
Once permeabilization has occurred, it leads to rapid cell
death through a variety of independent and redundant
mechanisms. These include caspase activation, irreversible
metabolic changes, disruption of oxidative phosphorylation,

and the release of caspase independent effectors such as
apoptosis inducing factor (AIF).

The most well known protein released from mitochondria
during apoptosis is cytochrome c. The function of cyto-
chrome ¢ in the mitochondria is to shuttle electrons from
complexes Il to IV in the respiratory chain. However,
during apoptosis mitochondria release cytochrome c into
the cytosol, where it associates with Apaf-1 along with
dATP and caspase-9 to form the macromolecular complex
known as the apoptosome.''® The formation of this
complex triggers activation of caspase-9 which in turn
cleaves and activates the effector, caspase-3, culminating
in cell death. Caspases are responsible for the proteolytic
inactivation of crucial cellular targets, including mitochon-
dria. For instance, caspases have been shown to enter the
permeabilized outer membrane of mitochondria and
cleave essential subunits in Complex I, disrupting mitochon-
drial respiration.”"® Interestingly, it has been shown that
inhibition of caspases has no effect on loss of AWV, and
delays—but does not prevent—cell death induced by
stimuli that activate the mitochondrial pathway.'?°

Other apoptotic factors released from the mitochondria
are Smac/Diablo, Omi/Htr2A, AIF, and endonuclease G
(EndoG). Inhibitors of apoptosis proteins (IAPs) are endogen-
ous inhibitors of initiator caspase-9 and downstream effec-
tor caspases-3 and -7. Once released, Smac/Diablo and
Omi/HtrA2 antagonize IAPs, thereby permitting activation
of caspases.'?''23 Another mitochondrial protein that pro-
motes cell death upon release into the cytosol is AIF. In
the mitochondria, AIF is critical for optimal detoxification
of ROS and the assembly and stabilization of Complex
1.12%125 Cardiac myocytes isolated from harlequin mutant
mice that have downregulated expression of AIF were
found to be more sensitive to hydrogen peroxide-induced
cell death, and hearts displayed increased injury after
I/R."?* In addition, targeted disruption of AIF in the heart
leads to severe defects in Complex | activity and develop-
ment of dilated cardiomyopathy.'?® These studies demon-
strate that AIF is essential for normal mitochondrial
function. However, upon induction of apoptosis, release of
AIF into the cytosol is followed by rapid translocation to
the nucleus where it facilitates chromatin condensation
and large-scale DNA fragmentation. For instance, Siu
et al."” found AIF and Omi/Htr2A in the cytosol in an
animal model of salt-induced heart failure. Another study
reported that AIF was detected in the cytosolic and
nuclear fractions of hearts subjected to I/R, and that IPC
attenuated AIF release, implicating AIF as a contributor to
myocardial cell death in 1/R."?® EndoG is a mitochondrion
specific nuclease that also translocates to the nucleus
during apoptosis, where it cleaves chromatin DNA into
nucleosomal fragments.'?® Bahi et al."*° found that ischae-
mia induced the release of EndoG from mitochondria and
translocation to the nucleus in isolated neonatal myocytes,
and that knock-down of EndoG by siRNA reduced DNA lad-
dering suggesting that EndoG is an important executor of
DNA degradation during ischaemia in cardiac myocytes.
However, the importance of EndoG in cell death has recently
been questioned. Two independent studies reported no
obvious effect on cell death and DNA degradation in EndoG
deficient mice. The mice are viable and there is no effect
on mitochondrial DNA copy number or mutation rate.'’
Moreover, cells isolated from these mice show no difference
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in susceptibility in response to various apoptotic stimuli.'?

However, these studies did not assess whether the hearts
were less susceptible to injury in response to stress such
as I/R or pressure overload. Clearly, more studies are
required to elucidate the role of EndoG in apoptosis. In
our laboratory, we found that some antibodies to EndoG
cross-reacted strongly with creatine kinase (unpublished
data), which may add to the confusion.

9. Mitochondrial fission and ‘mitophagy’

Mitochondria are dynamic organelles that are constantly
undergoing fission and fusion to adapt to changing conditions
of the cell. Recently, several studies have reported that
mitochondrial morphology changes during apoptosis, result-
ing in small round mitochondrial fragments.'3"'3> For
instance, Karbowski et al.'® reported that Bax co-localized
with Dynamin-Related Protein-1 (Drp-1), a protein involved
in mitochondrial fission, at defined foci on the mitochondrial
membrane at the onset of apoptosis. More importantly, a
dominant negative of Drp-1 inhibited fragmentation and
apoptosis, but not Bax translocation to the foci in response
to staurosporine treatment. Drp-1 has also been reported
to be required for optimal release of cytochrome c¢
induced by the BH3-only protein Bik, presumably through
remodelling of the cristae.’*® Moreover, the mitochondrial
network in HL-1 cardiac myocytes was shown to undergo
extensive fragmentation in response to simulated I/R or
overexpression of Bnip3."">"3” The Bnip3-mediated mito-
chondrial fragmentation correlated with accumulation of
Bax and Drp-1 at distinct clusters on the mitochondrial frag-
ments."™ These studies suggest that the Bcl-2 proteins
can mediate apoptosis through the mitochondrial fission
pathway.

Mitochondrial dysfunction has also been reported to lead
to upregulation of autophagy. Autophagy is a process import-
ant in cellular homeostasis and in removing excess or
damaged organelles.'® For instance, mitochondrial frag-
mentation correlated with upregulation of autophagy and
sequestration of mitochondrial fragments in autophago-
somes (mitophagy) in HL-1 myocytes overexpressing
Bnip3.""® Autophagy plays an important role in the cellular
response to stress and has been shown to be upregulated
in the myocardium in response to I/R."*”'3 Upregulation
of autophagy in HL-1 myocytes was found to protect
against simulated I/R cell death in HL-1 myocytes,">” while
enhanced autophagy during chronic myocardial ischaemia
correlated with decreased apoptosis, suggesting that induc-
tion of autophagy is a protective response.’ In contrast,
Beclin-1 is a protein essential in the autophagic pathway
and heterozygous knockout mice had reduced autophagy,
smaller infarcts, and apoptosis after I/R compared to wild
type, suggesting that upregulation of autophagy in
response to I/R may be detrimental. Clearly, further
studies are required to elucidate the roles of mitochondrial
fragmentation and autophagy in myocardial cell death.

10. Clinical perspective

Many pharmacological agents that directly or indirectly
protect mitochondrial integrity in response to stress have
been used in clinical trials for the treatment of various car-
diovascular diseases. For instance, beta-blockers such as

carvedilol have been shown to be very effective for the
treatment of ischaemic heart disease and congestive heart
failure. Carvedilol has been demonstrated to have
additional effects independent of blocking the
beta-adrenergic receptor and has been shown to directly
protect against mitochondrial permeability transition by
reducing oxidative stress.'#""'*2 Although most antioxidants
protect against myocardial cell death in animal models,
clinical trials have produced mixed results. For instance,
large clinical trials using antioxidant vitamins have failed
to show any clinical benefits on the heart." |n contrast,
clinical studies have demonstrated that infusion of N-acetyl
cysteine (NAC) duing thrombolysis correlated with a reduced
infarct size and increased preservation of left ventricular
function.'® " |n addition, administration of NAC in combi-
nation with streptokinase reduced oxidative stress and
improved left ventricular function in patients with acute
myocardial infarction.'*®

Pharmacological openers of the mKsp channel were
developed for the treatment of angina pectoris and hyper-
tension even before this channel was identified as an import-
ant mediator of protection during IPC. Clinical studies have
demonstrated that infusion of nicorandil, a hybrid Karp
channel opener and nitrate, improved left ventricular func-
tion in patients with acute myocardial infarction.'®
Although pre-conditioning provides great protection
against myocardial injury in animal models of I/R, its clinical
application is limited since the coronary artery is already
occluded in patients with acute myocardial infarction by
the time they are admitted to the hospital. In contrast,
post-conditioning offers greater clinical potential and can
be applied to a number of clinical procedures such as
cardiac transplantation and coronary angioplasty. The
study by Staat et al.' demonstrated that patients sub-
jected to four cycles of 1 min ischaemia and 1 min reperfu-
sion immediately upon reperfusion during coronary
angioplasty for acute myocardial infarction had reduced
infarct size compared to control patients.

11. Conclusions

Mitochondria are critical to cardiac cell survival through
their essential roles in energy production and calcium
homeostasis, but they also function as central regulators
of apoptotic and necrotic cell death (Figure 7). Bax/Bak-
mediated permeabilization of the MOM leads to apoptosis,
while opening of the mPTP leads to a caspase-independent
(necrotic) form of cell death. In either case, failure of mito-
chondrial ATP production also contributes to cell death in
these energy-intensive cells. To protect cardiac myocytes
from death, it is important to preserve mitochondrial integ-
rity. Loss of mitochondrial membrane integrity is generally
considered a point of no return, as inhibiting the post-
mitochondrial phase of apoptosis does not rescue the cardi-
omyocyte. Preservation of mitochondrial integrity is of
utmost importance in the design of cardioprotective
therapies.
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