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Neurons are critically dependent on mitochondrial

integrity based on specific morphological, biochemical,

and physiological features. They are characterized by

high rates of metabolic activity and need to respond

promptly to activity-dependent fluctuations in bioener-

getic demand. The dimensions and polarity of neurons

require efficient transport of mitochondria to hot spots of

energy consumption, such as presynaptic and postsynap-

tic sites. Moreover, the postmitotic state of neurons in

combination with their exposure to intrinsic and extrinsic

neuronal stress factors call for a high fidelity of mitochon-

drial quality control systems. Consequently, it is not

surprising that mitochondrial alterations can promote

neuronal dysfunction and degeneration. In particular,

mitochondrial dysfunction has long been implicated in

the etiopathogenesis of Parkinson’s disease (PD), based

on the observation that mitochondrial toxins can cause

parkinsonism in humans and animal models. Substantial

progress towards understanding the role of mitochondria

in the disease process has been made by the identification

and characterization of genes causing familial variants of

PD. Studies on the function and dysfunction of these genes

revealed that various aspects of mitochondrial biology

appear to be affected in PD, comprising mitochondrial

biogenesis, bioenergetics, dynamics, transport, and

quality control.
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Introduction

Parkinson’s disease (PD) is a heterogeneous neurodegenera-

tive disease entity typically diagnosed by its cardinal motor

symptoms, including bradykinesia, hypokinesia, rigidity,

resting tremor, and postural instability, which are subsumed

under the syndrome of parkinsonism. The motor manifesta-

tions are attributable to the degeneration of dopaminergic

(DA) neurons within the substantia nigra pars compacta

(SNc), resulting in dopamine depletion and derangements

of neuronal circuits in the basal ganglia target regions of these

neurons. Another pathological hallmark of PD is the presence

of a-synuclein-containing deposits in neuronal perikarya

(Lewy bodies) and processes (Lewy neurites). The role of

Lewy bodies in the pathogenic process is discussed contro-

versially. Parkinsonism can occur in the absence of Lewy

bodies, for instance in some cases of familial PD or in drug-

induced parkinsonism (Davis et al, 1979; Langston et al,

1999; Nuytemans et al, 2010). On the other hand, Lewy

body pathology is sometimes found at autopsy in

individuals without reported symptoms of parkinsonism

(Jellinger, 2009; Adler et al, 2010). The manifestation of

non-motor symptoms, some of which even precede the

motor symptoms, reflect the fact that the neurodegenerative

process is not limited to the SNc but has a much wider

impact. Non-motor symptoms, such as autonomic

dysfunction, sleep abnormalities, depression, and dementia,

can contribute considerably to disability, as they usually are

not responsive to dopamine replacement therapy.

The etiopathogenesis of sporadic PD, the most common

form of parkinsonism, is complex with variable contributions

of genetic susceptibility and environmental factors (Figure 1).

Ageing is one of the most important risk factors for sporadic

PD. Given the demographic trend towards an aged popula-

tion, the prevalence of PD and thus its socioeconomic burden

will increase dramatically in the next decades. Over the last

15 years enormous effort has been taken to unravel the role of

genetics in PD pathogenesis. Linkage analyses discovered six

genes associated with Mendelian forms of parkinsonism, and

genome-wide association studies identified susceptibility

genes contributing to the risk for sporadic PD. Strikingly,

there is an overlap between Mendelian genes and risk genes

in the case of a-synuclein and leucine-rich repeat kinase 2

(LRRK2), blurring the traditional boundaries between familial

and sporadic PD. The identification of genes associated with

parkinsonism has had a major impact on PD research,

allowing to dissect molecular pathways implicated in the

pathogenesis. From genetic cellular and animal models, it

emerged that mitochondrial alterations, oxidative stress, and

impaired clearance of misfolded proteins and damaged orga-
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nelles by proteasomal and lysosomal degradation pathways

contribute to the disease process (reviewed in Dawson et al,

2010; Corti et al, 2011; Martin et al, 2011; and Shulman et al,

2011). Moreover, there is increasing evidence that sporadic

and familial variants of PD share some common pathways

that converge at mitochondria (reviewed in Abou-Sleiman

et al, 2006; Lin and Beal, 2006; Mandemakers et al, 2007;

Bogaerts et al, 2008; Henchcliffe and Beal, 2008; Schapira,

2008; Vila et al, 2008; Van Laar and Berman, 2009; Bueler,

2010; Burbulla et al, 2010; Winklhofer and Haass, 2010; and

Schon and Przedborski, 2011). In the following, we will

review our current knowledge on the role of mitochondria

in PD pathogenesis and how these insights have changed our

conceptional thinking and may eventually be translated into

novel neuroprotective approaches.

Mitochondrial dysfunction in sporadic PD

The role of complex I deficiency and mitochondrial DNA

mutations

The first link between parkinsonism and mitochondria be-

came evident in the early 1980s, when it was discovered that

a neurotoxin causing a parkinsonian syndrome inhibits mi-

tochondrial respiration. MPTP (1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine), a contaminant of an illicit opioid pre-

paration which was used intravenously by drug addicts, can

cross the blood–brain barrier and is taken up by DA neurons

via the dopamine transporter after oxidation to MPPþ

(Langston et al, 1983; Nicklas et al, 1985). Within DA

neurons, MPPþ accumulates in mitochondria and inhibits

complex I (NADH ubiquinone oxidoreductase) of the electron

transport chain. Although MPTP-induced parkinsonism

results from an acute toxic insult and therefore differs from

the slow and progressive disease process in sporadic PD, the

impact of MPTP has been far reaching. In particular, MPTP

and other complex I inhibitors such as rotenone are still being

used to model PD in animals and to evaluate therapeutic

approaches (reviewed in Hirsch, 2007; Bezard and

Przedborski, 2011; and Cannon and Greenamyre, 2011).

Interestingly, consumption of fruit and herbal teas from

plants of the Annonceae family, containing the complex I

inhibitor annonacin, has been linked to the high frequency of

atypical parkinsonism in Guadeloupe (Caparros-Lefebvre and

Elbaz, 1999; Lannuzel et al, 2003; Champy et al, 2004),

further substantiating a causal role of mitochondrial

dysfunction in the pathogenesis of at least some

parkinsonian syndromes. In support of a direct or indirect

role of complex I, the activity of complex I has been reported

to be reduced (in the range of 30%) in the SNc and frontal

cortex of PD patients at autopsy (Schapira et al, 1989; Parker

et al, 2008). In mitochondrial preparations from PD frontal

cortex samples, complex I subunits derived from both

mitochondrial and nuclear genomes were found to be

oxidatively damaged, reflected by an increase in protein

carbonyls (Keeney et al, 2006). This study also reported

that the levels of an 8-kDa subunit of complex I were
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Figure 1 Aetiology of Parkinson’s disease (PD) and possible links to mitochondrial integrity. Familial PD is caused by mutations in genes
identified by linkage analyses that are inherited in an autosomal recessive or dominant manner. Sporadic PD is considered to be a complex
neurodegenerative disease entity with both genetic susceptibility and environmental factors contributing to the etiopathogenesis. Recent
genome-wide association studies have identified susceptibility loci, which in two cases (a-synuclein and LRRK2) overlap with classical PD
genes, linking the aetiology of familial parkinsonism with that of sporadic PD. Both genetic and environmental factors influence various
mitochondrial aspects, such as bioenergetics, dynamics, transport, and quality control.
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reduced by 33% in PD frontal cortex, suggesting that

oxidative damage may cause misassembly or reduced

stability of complex I subunits. Remarkably, in about 25%

of PD patients analysed complex I activities were found to be

reduced also in platelets (reviewed in Schapira, 2008). This

finding may indicate a systemic complex I defect in a

subfraction of PD patients due to genetic and/or

environmental causes. In a mouse model of mild complex I

deficiency induced by the dopamine neuron-specific loss of

the Ndufs4 subunit, increased striatal dopamine turnover

rates and decreased dopamine release from striatal axon

terminals have been observed (Sterky et al, 2012). These

alterations in striatal dopamine homeostasis may be caused

by a reduced vesicular uptake of dopamine due to ATP

deficiency followed by enhanced cytosolic dopamine

metabolism, suggesting that impaired dopamine release

may be an early consequence of mitochondrial impairment

(Choi et al, 2011; Sterky et al, 2012).

Mitochondrial oxidative phosphorylation depends on both

mitochondrial and nuclear DNA-encoded proteins.

Mitochondrial DNA (mtDNA) encodes 13 proteins that are

all subunits of respiratory chain complexes, 22 tRNAs, and 2

rRNAs. Mutations in mtDNA can be either inherited mater-

nally or acquired and typically cause variable phenotypes in

cells with high energy demands, such as neurons and muscle

cells. Mouse models with defects in genes essential for the

maintenance of mtDNA support the notion that alterations in

the mitochondrial genome cause respiratory chain deficien-

cies and phenotypes associated with ageing and age-related

diseases (reviewed in Reeve et al, 2008; Larsson, 2010; and

Park and Larsson, 2011). Transgenic mice expressing a

proofreading-deficient version of the mtDNA polymerase g
(POLG) accumulate mtDNA mutations and display features

of premature ageing (Trifunovic et al, 2004; Kujoth et al,

2005). Notably, cosegregation of parkinsonism with

mutations in the human POLG1 gene has been reported in

several families (reviewed in Orsucci et al, 2011). In support

of a causative role of mitochondrial dysfunction in PD, mice

with a DA neuron-specific deletion of the mitochondrial

transcription factor TFAM, which is essential for

mitochondrial transcription and maintenance of mtDNA,

develop a parkinsonian phenotype reproducing key features

of PD: adult onset, progressive impairment of motor

functions responsive to L-DOPA therapy, and loss of

midbrain DA neurons (Ekstrand et al, 2007). Similarly,

expression of mitochondrially targeted PstI endonuclease in

DA neurons, which induces double-strand breaks in mtDNA,

causes progressive neuronal degeneration and striatal

dopamine depletion (Pickrell et al, 2011).

An age-dependent increase in mtDNA deletions has been

found in individual DA neurons dissected from the SNc of

post mortem human brain (Bender et al, 2006; Kraytsberg

et al, 2006). Neurons harbouring 460% of mtDNA molecules

with deletions showed a significant decrease in cytochrome c

oxidase, three catalytic subunits of which are encoded by

mtDNA. Different types of mtDNA deletions were found in

the same individual, but each neuron contained only a single

mtDNA mutation, indicating that the mutation was acquired

and clonally expanded. In comparison with age-matched

controls, the amount of mtDNA mutations was slightly

higher in DA neurons from PD patients (Bender et al,

2006). Moreover, SNc neurons seem to be particularly

vulnerable to mtDNA mutations, since hippocampal

neurons or pyramidal cortical neurons of aged individuals

did not contain high levels of mtDNA mutations.

There is currently no strong evidence that mtDNA muta-

tions are a major primary cause of PD. However, it seems

quite plausible that mtDNA mutations accumulate in the

course of the disease as a consequence of an increase in

cellular stress and mitochondrial replication errors along with

a decrease in the fidelity of quality control systems. Once the

mtDNA mutations surpass a critical threshold, the resulting

respiratory deficiency may contribute to neuronal degenera-

tion and cell death. Of note, complex I is particularly vulner-

able to mtDNA damage, since seven of its subunits are

encoded by mtDNA.

Mitochondrial dysfunction and oxidative stress

According to a widespread concept, inhibition of complex I

decreases mitochondrial ATP production and increases the

formation of reactive oxygen species (ROS), which damage

mtDNA, components of the respiratory chain and other

mitochondrial factors, thereby triggering a vicious circle

between mitochondrial impairment and oxidative stress (re-

viewed in Abou-Sleiman et al, 2006; Lin and Beal, 2006; and

Henchcliffe and Beal, 2008). This model has been particularly

popular to explain the increased vulnerability of SNc DA

neurons, since this neuronal population is characterized by

a high oxidative burden and a low anti-oxidant capacity.

Mitochondria can be both a source and a target of ROS

(reviewed in Starkov, 2008 and Murphy, 2009). However,

an obligatory link between mitochondrial dysfunction and

increased ROS production has been questioned based on

weak experimental support for such a scenario in vivo

(reviewed in Fukui and Moraes, 2008; Gems and Doonan,

2009; and Park and Larsson, 2011). For example, rotenone

toxicity has been reported to be caused by spare respiratory

capacity rather than oxidative stress. In primary neurons,

rotenone does increase the formation of mitochondrial

superoxide, however, trapping superoxide fails to reduce

rotenone toxicity (Yadava and Nicholls, 2007). In addition,

various mouse models with severe respiratory chain

deficiency display increased apoptotic cell death but not

increased ROS formation or oxidative stress (Wang et al,

2001; Kujoth et al, 2005; Trifunovic et al, 2005; Kruse et al,

2008). Moreover, ROS are not always harmful agents, they

also act as important signal transducers in a variety of

biological processes.

Mitochondrial effects of genes associated
with PD

Parkin: a versatile neuroprotective E3 ubiquitin ligase

The parkin gene has been identified in 1998 as a causative

gene for autosomal recessive parkinsonism (Kitada et al,

1998). More than 100 pathogenic parkin mutations have

been reported, accounting for the majority of autosomal

recessive parkinsonism. The parkin gene encodes a

cytosolic 465 amino-acid protein with a ubiquitin-like

(UBL) domain at the N-terminus and an RBR (RING-

between-RING) domain close to the C-terminus. The RBR

domain is composed of two RING fingers that flank an in-

between RING (IBR) domain and coordinates six zinc ions.

An additional RING finger domain (RING0) has been
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identified between the UBL and RBR motifs, which con-

tributes to the binding of zinc ions (Hristova et al, 2009).

Coordination of zinc ions (eight Zn2þ in total) is essential for

parkin to adopt and maintain its correct three-dimensional

structure, consistent with the observation that pathogenic

mutations within the zinc-binding motifs are inactivated by

misfolding (Cookson et al, 2003; Gu et al, 2003; Sriram et al,

2005; Wang et al, 2005b, 2007). Moreover, the cysteine-rich

RBR domain renders parkin vulnerable to inactivation by

severe oxidative stress (Winklhofer et al, 2003; LaVoie et al,

2007; Wong et al, 2007; Schlehe et al, 2008). Oxidatively

modified, misfolded parkin has indeed been found in the

brains of PD patients, suggesting that inactivation of parkin

may also play a role in sporadic PD (Pawlyk et al, 2003;

Chung et al, 2004; Yao et al, 2004; LaVoie et al, 2005; Wang

et al, 2005a). In support of this notion, the c-Abl tyrosine

kinase has been reported to be activated in DA neurons of

sporadic PD patients, leading to the phosphorylation and

inactivation of parkin (Ko et al, 2010; Imam et al, 2011).

The presence of the RBR domain suggested that parkin acts

as an E3 ubiquitin ligase, mediating the covalent attachment

of ubiquitin moieties to substrate proteins (Shimura et al,

2000; Zhang et al, 2000). Considerable evidence has been

accumulated indicating that parkin can catalyse various

modes of ubiquitination, including poly-ubiquitination with

different lysine linkages or mono-ubiquitination. The linkage

type determines the fate of the ubiquitinated protein;

ubiquitin chain linkage via Lys48 typically targets

substrates for proteasomal degradation, whereas linkage

involving other lysine residues and mono-ubiquitination or

multiple mono-ubiquitination are implicated in numerous

regulatory processes, such as signal transduction,

trafficking, DNA damage response, DNA repair, and

autophagy (reviewed in Komander, 2009; Ikeda et al, 2010;

and Behrends and Harper, 2011). There are two major classes

of E3 ubiquitin ligases: HECT ligases transiently accept

ubiquitin from an E2 conjugating enzyme at a cysteine

residue within the HECT domain to form a thioester,

whereas RING-type ligases act as bridging proteins that

bring the ubiquitin-charged E2 in close proximity to the

substrate, but are not ubiquitinated themselves (reviewed in

Deshaies and Joazeiro, 2009). It was recently shown that

parkin functions as an RING/HECT hybrid: RING1 binds to a

ubiquitin-charged E2 conjugating enzyme, which transfers

ubiquitin to a conserved cysteine residue in RING2, thereby

forming a thioester between parkin and ubiquitin (Wenzel

et al, 2011). Ubiquitin is then discharged to a lysine residue of

the substrate protein. So far, this mechanism has been

demonstrated in vitro with recombinant parkin and auto-

ubiquitination of parkin as a surrogate substrate, but

undoubtedly, these findings have a major impact on our

understanding of the substrate specificity of RBR E3 ligases.

To date, about 30 putative parkin substrates have been

reported and both degradative and non-degradative ubiquiti-

nation were attributed to parkin (reviewed in Dawson and

Dawson, 2010). These substrates do not fit into a common

pathway that could unravel the function of parkin. However,

from a plethora of studies in cellular and animal models it

emerged that parkin has a remarkably wide protective

capacity. The increased expression of parkin both in vitro

and in vivo protects against cell death in various stress

paradigms, such as mitochondrial stress, endoplasmic

reticulum (ER) stress, excitotoxicity, and proteotoxic stress

(reviewed in Moore, 2006 and Pilsl and Winklhofer, 2012).

Vice versa, parkin-deficient cells are characterized by an

increased vulnerability to stress-induced cell death.

Surprisingly, the sensitivity of parkin knockout (KO) mice

to neurotoxins, such as MPTP or 6-OHDA seems not to be

increased; nigral degeneration in parkin KO mice has

only been reported after inflammatory stimulation by

lipopolysaccaride (Perez et al, 2005; Thomas et al, 2007;

Frank-Cannon et al, 2008). In line with parkin playing a

role in the cellular stress response, parkin gene expression

is considerably upregulated under cellular stress. ATF4 and

p53 have been shown to increase parkin expression, whereas

c-Jun and N-myc act as transcriptional repressors of parkin

(West et al, 2004; Bouman et al, 2011; Zhang et al, 2011).

Several viability pathways were reported to be influenced by

parkin, including JNK, PI3K, and NF-kB signalling, p53 tran-

scriptional activity, or Bax activation (Cha et al, 2005; Yang et al,

2005; Fallon et al, 2006; Henn et al, 2007; Hasegawa et al, 2008;

da Costa et al, 2009; Sha et al, 2010; Johnson et al, 2012). Parkin

has recently been shown to induce the proteasomal degradation

of PARIS (parkin-interacting substrate), which acts as a

transcriptional repressor of PGC-1a (peroxisome proliferator-

activated receptor gamma-co-activator 1-alpha) (Shin et al,

2011). PGC-1a stimulates mitochondrial biogenesis as a co-

activator of various transcription factors, such as NRF (nuclear

respiratory factor)-1 and -2 (reviewed in Scarpulla, 2011). Thus,

loss of parkin function suppresses mitochondrial biogenesis

through an accumulation of PARIS. This study not only

provided an important link between the protective activity of

parkin and mitochondria but also implicated a transcriptional

program in mediating the effects of parkin. Moreover, by

generating conditional parkin KO mice Dawson and coworkers

could show for the first time that loss of parkin function in adult

mice leads to a progressive degeneration of DA neurons which

can be suppressed by silencing PARIS expression (Shin et al,

2011). This finding supports the notion that developmental

compensation accounts for the absence of major phenotypic

alterations in germline parkin KO mice.

Parkin at the interface of neurodegeneration and cancer

In an attempt to characterize FRA6E, one of the most active

common fragile sites in the human genome located at chro-

mosome 6q25-q27, the parkin genomic structure was found

to span a large region of FRA6E (Cesari et al, 2003; Denison

et al, 2003a). Common fragile sites are specific loci that are

susceptible to chromosomal breaks and rearrangements and

seem to play a role in oncogenesis. Studies to detect genomic

copy number variations in human ovarian and breast

carcinomas identified a common minimal region of loss

located within the parkin gene. Indeed, decreased or absent

parkin expression was observed in various malignancies

(Cesari et al, 2003; Denison et al, 2003a, b; Picchio et al,

2004; Wang et al, 2004; Agirre et al, 2006; Fujiwara et al,

2008; Ikeuchi et al, 2009; Poulogiannis et al, 2010; Veeriah

et al, 2010; Mehdi et al, 2011). Several studies have now

provided considerable evidence that parkin might be a bona

fide tumour suppressor gene (TSG). Heterozygous deletion of

parkin accelerated the development of intestinal adenoma in

mice expressing mutant APC, a regulator of Wnt signalling

(Poulogiannis et al, 2010). Upon g-irradiation parkin KO mice

developed lymphomas in the spleen with a shorter tumour
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latency compared with wild-type mice (Zhang et al, 2011).

In one line of parkin KO mice lacking exon 3, enhanced

hepatocyte proliferation and development of hepatic tumours

has been observed (Fujiwara et al, 2008). Ectopic expression

of parkin in parkin-deficient tumour cells lines (glioma cells

or lung cancer cells) resulted in reduced tumour growth after

injection of these cells as xenografts into nude mice (Picchio

et al, 2004; Veeriah et al, 2010). Some studies reported that

parkin overexpression inhibits cell proliferation, albeit this is

not a consistent finding (Picchio et al, 2004; Poulogiannis

et al, 2010; Tay et al, 2010; Veeriah et al, 2010).

The mechanism underlying the tumour suppressor activity

of parkin is not well understood. A previous study identified

cyclin E as a substrate of parkin for ubiquitination and

proteasomal degradation in neuronal cells (Staropoli et al,

2003); therefore, it is tempting to speculate that a decrease in

parkin expression results in an accumulation of cyclin E, a

cell-cycle regulator required for the transition from G1 to S

phase. Increased levels of cyclin E have been observed in

some but not all parkin-deficient primary tumours and cancer

cell lines (Ikeuchi et al, 2009; Tay et al, 2010; Veeriah et al,

2010; Yeo et al, 2012). Based on the effect of parkin on

mitochondrial bioenergetics as reviewed further below, it is

also conceivable that parkin exerts its tumour suppressor

activity via influencing tumour metabolism. Evidence for

such a scenario was recently provided by Feng and

coworkers (Zhang et al, 2011). A hallmark of tumour cells

is the switch from mitochondrial energy production to

aerobic glycolysis, which is known as the Warburg effect

(reviewed in Vander Heiden et al, 2009 and Cairns et al,

2011). To compensate for the lower efficiency of ATP

production by glycolysis compared with mitochondrial

respiration, tumour cells increase glucose uptake and

utilization. An important role in regulating energy

metabolism plays the TSG p53, a transcription factor that

promotes mitochondrial respiration and reduces glycolysis

via transcription of specific target genes. Parkin was recently

identified as a p53 target gene, which can mediate effects of

p53 on energy metabolism and antioxidant defense (Zhang

et al, 2011). Parkin deficiency activates glycolysis and reduces

mitochondrial respiration in human lung cancer cells and

mouse embryonic fibroblasts, thereby contributing to the

Warburg effect. Remarkably, parkin can also affect lipid

metabolism by regulating fatty acid uptake. In wild-type

mice, parkin expression is robustly upregulated upon

exposure to a high fat and cholesterol diet (HFD), inducing

the stabilization of the fatty acid transporter CD36, whereas

parkin KO mice are resistant to weight gain and hepatic

insulin resistance under HFD feeding (Kim et al, 2011).

Whether germline pathogenic mutations in the parkin gene

can increase the risk for cancer is difficult to assess given that

parkin-linked parkinsonism is rare and a large number of

cases would be required for a statistically robust epidemio-

logical study (reviewed in Plun-Favreau et al, 2010 and

Devine et al, 2011).

PINK1: a mitochondrial kinase of complex regulation

and processing

The PINK1 (PTEN-induced putative kinase 1) gene was linked

to autosomal recessive early onset PD in 2004 (Valente et al,

2004). It encodes a ubiquitously expressed 581 amino-acid

protein with an N-terminal mitochondrial targeting sequence

(MTS), a transmembrane domain and a highly conserved

serine/threonine kinase domain with homology to the Ca2þ/

calmodulin family. About 30 pathogenic PINK1 mutations

have been identified, among them missense, non-sense, or

frameshift mutations, deletions or genomic rearrangements

(reviewed in Deas et al, 2009; Nuytemans et al, 2010; and

Corti et al, 2011). Most PINK1 mutations have been described

to impair its kinase activity or reduce the stability of the

protein, in line with a loss of function mechanism.

The subcellular localization of PINK1 is still debated.

PINK1 has been found at the outer and inner mitochondrial

membrane and in the cytosol (Silvestri et al, 2005; Muqit

et al, 2006; Haque et al, 2008; Lin and Kang, 2008; Weihofen

et al, 2009; Jin et al, 2010; Narendra et al, 2010b; Murata et al,

2011; Shi et al, 2011). From recent research, a complex

mechanism of PINK1 targeting and processing has emerged

that could provide an explanation for the different

observations regarding PINK1 localization. PINK1 seems to

be imported via the TOM/TIM23 complexes at the outer/

inner mitochondrial membrane in a membrane potential-

dependent manner for cleaving off its MTS by the

mitochondrial processing protease (Greene et al, 2012).

PINK1 exposing its kinase domain to the intermembrane

space could then be released from the transport pore by

lateral diffusion to be further processed by a protease

giving rise to a PINK1 fragment, which is subsequently

degraded by an MG132-sensitive protease, possibly in the

cytoplasm. How this retrotranslocation is mediated, is not

known. It has been hypothesized that proteolytic cleavage of

a PINK1 import intermediate still associated with the TOM

complex leads to a C-terminal PINK1 fragment that reaches

the cytoplasm by reverse translocation (Meissner et al, 2011).

PARL (presenilin-associated rhomboid like protease) has

recently been identified as a protease promoting PINK1

cleavage under basal conditions to keep mitochondrial

PINK1 levels low (Whitworth et al, 2008; Jin et al, 2010;

Deas et al, 2011; Meissner et al, 2011; Shi et al, 2011). When

the mitochondrial membrane potential is dissipated, PINK1

mitochondrial import and processing by PARL is inhibited,

leading to the integration of PINK1 into the outer

mitochondrial membrane, which is a prerequisite to recruit

parkin for the induction of mitophagy (Jin et al, 2010;

Matsuda et al, 2010; Narendra et al, 2010b; Meissner et al,

2011) (see below). In depolarized mitochondria, endogenous

PINK1 is associated with the TOM complex, which may allow

rapid reimport of PINK1 after repolarization to switch off the

mitophagy pathway (Lazarou et al, 2012). Interestingly,

PINK1 can be processed in the absence of PARL resulting in

a slightly different cleavage pattern, thus, PARL is apparently

not the only protease capable of PINK1 processing (Narendra

et al, 2010b; Shi et al, 2011; Greene et al, 2012).

PINK1 can increase the resistance to diverse cellular

stressors in a kinase-dependent manner (Petit et al, 2005;

Haque et al, 2008; Wood-Kaczmar et al, 2008; Gandhi et al,

2009; Morais et al, 2009; Sandebring et al, 2009; Klinkenberg

et al, 2010; Murata et al, 2011; Wang et al, 2011b). Of note,

PINK1 deficiency in mice, as demonstrated in germline PINK1

KO mice or in shRNA-mediated PINK1 knockdown mice,

significantly increases sensitivity of DA neurons to systemic

MPTP treatment (Haque et al, 2012). Nigrostriatal

degeneration in these models can be prevented by virally

expressed parkin or DJ-1, suggesting that these genes are
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either downstream or act in parallel pathways to confer stress

protection. To get insight into the mechanism underlying the

protective activity of PINK1, efforts have been intensified to

identify its substrates. Pridgeon et al (2007) reported that

PINK1 phosphorylates TRAP1 (TNF receptor-associated

protein 1), a mitochondrial chaperone of the Hsp90 family

also known as Hsp75. Phosphorylation of TRAP1 was shown

to be essential for the protective activity of PINK1 against

oxidative stress. Plun-Favreau et al (2007) identified the

mitochondrial serine protease HtrA2/Omi as a PINK1

interactor. A direct interaction between PINK1 and HtrA2/

Omi favours the phosphorylation of HtrA2/Omi, which

seems to be mediated by the p38 stress kinase pathway.

Phosphomimetic HtrA2/Omi mutants show an increased

protease activity along with the ability to protect against

mitochondrial toxins. In another approach to identify

PINK1-interacting proteins by immunopurification, the

mitochondrial outer membrane Rho-like GTPase Miro2 and

the adaptor protein Milton were found to form a complex

with PINK1 (Weihofen et al, 2009). By binding to both Miro

(two human homologues Miro1 and Miro2) and kinesin

heavy chain, Milton links mitochondria to microtubules for

axonal transport (Guo et al, 2005; Glater et al, 2006). The

physical interaction of PINK1 and Miro therefore suggested

that PINK1 has an impact on mitochondrial transport. In a

recent study employing cultured rat hippocampal neurons or

Drosophila larval neurons, it was indeed observed that the

overexpression of either PINK1 or parkin causes an arrest of

mitochondrial transport (Wang et al, 2011d). Based on the

known interaction between PINK1 and Miro, Schwarz and

coworkers followed up the idea that PINK1 and parkin may

directly modify Miro. Miro1 was shown to be a direct target of

PINK1 for phosphorylation, and Miro1 phosphorylated at

serine 156 in turn is degraded by the proteasome in a

parkin-dependent manner. This observation fits into a

model in which degradation of Miro induced by the PINK1/

parkin pathway stops mitochondrial movement and helps to

sequester damaged mitochondria prior to their elimination by

mitophagy (see below). A recent study from Bingwei Lu’s

laboratory showed that PINK1 and Miro have opposing

effects on mitochondrial flux and net velocity in Drosophila

larval motor neurons (Liu et al, 2012). Overexpression of

PINK1 or Miro RNAi inhibited axonal mitochondrial

transport in both anterograde and retrograde directions, and

downregulation of Miro rescued PINK1 mutant phenotypes in

Drosophila muscles and DA neurons. Liu et al also found that

overexpression of PINK1 and parkin reduces Miro1 levels in

HeLa cells, but phosphorylation of Miro1 at serine 156 was

not required for this effect. Intriguingly, whereas Miro protein

levels were increased in PINK1 mutant flies, the opposite

effect was observed in mammalian models of PINK1

deficiency. In mouse embryonic fibroblasts from PINK1 KO

mice or in PINK1 RNAi HeLa cells, Miro protein levels were

significantly reduced, possibly reflecting differences between

Drosophila and mammalian cells to respond to and

compensate for PINK1 loss of function. An impact of PINK1

on mitochondrial transport was also observed by Mandelkow

and coworkers who found that MARK2 (microtubule affinity-

regulating kinase 2) phosphorylates N-terminally truncated

PINK1 thereby increasing its kinase activity (Matenia et al,

2012). Whereas N-terminally truncated PINK1 overexpressed

in chicken retinal ganglion cells promotes anterograde

mitochondrial transport and increases the fraction of

stationary mitochondria, full-length PINK1 enhances

retrograde transport, suggesting that PINK1 may act as a

molecular switch between anterograde and retrograde

mitochondrial transport depending on the mitochondrial

membrane potential.

The mechanisms of protection mediated by PINK1 are not

completely understood. It has been suggested that effects on

mitochondrial bioenergetics, quality control, and calcium

homeostasis are involved. In various PINK1 loss of function

models, mitochondrial impairment has been observed, such

as alterations in mitochondrial morphology and dynamics, a

decrease in mitochondrial membrane potential, and respira-

tion defects (Exner et al, 2007; Hoepken et al, 2007; Gautier

et al, 2008; Piccoli et al, 2008; Dagda et al, 2009, 2011; Gegg

et al, 2009; Gispert et al, 2009; Lutz et al, 2009; Sandebring

et al, 2009; Cui et al, 2010; Yuan et al, 2010; Amo et al, 2011;

Heeman et al, 2011). Decreased complex I enzymatic activity

was found in fly and mouse models lacking PINK1 and

suggested to be the primary event leading to synaptic

dysfunction under increased energy demand, based on the

observation that the mobilization of reserve pool synaptic

vesicles during rapid stimulation is impaired at the

neuromuscular junction in PINK1-deficient flies and can be

rescued by supplementing synapses with ATP (Morais et al,

2009). Moreover, downregulation of a complex I component

in flies phenocopies several PINK1 mutant phenotypes

(Vilain et al, 2012). An alternative explanation was

provided by Abramov and coworkers who observed an

imbalance of calcium homeostasis in PINK1-deficient cells

(Gandhi et al, 2009). When PINK1 is downregulated by RNAi

in neurons derived from human embryonic stem cells,

cellular stress results in mitochondrial calcium overload

due to the dysfunction of the Naþ/Ca2þ exchanger.

Mitochondrial Ca2þ overload in turn stimulates ROS

production, inhibits the glucose transporter and reduces

respiratory functions.

Parkin and PINK1: team players in the removal of

damaged mitochondria

Surprisingly, neither parkin nor PINK1 KO mice show an

overt morphological or behavioural phenotype, which may

be explained by developmental compensation or functional

redundancy. However, both parkin and PINK1-deficient cells

are characterized by an increased vulnerability to mitochon-

drial damage (Casarejos et al, 2006; Rosen et al, 2006; Henn

et al, 2007; Paterna et al, 2007; Haque et al, 2008, 2012;

Sandebring et al, 2009), indicating that mitochondrial

alterations can be compensated under basal but not under

stress conditions. Remarkably, parkin or PINK1 mutant flies

display a striking and surprisingly similar phenotype,

including reduced life span, male sterility, and apoptotic

flight muscle degeneration. In flies and cultured cells,

parkin can rescue PINK1 deficiency but not vice versa,

indicating that parkin is acting downstream of PINK1 (Clark

et al, 2006; Park et al, 2006; Yang et al, 2006; Exner et al,

2007; Lutz et al, 2009).

Evidence for a linear PINK1/parkin mitochondrial pathway

was first provided by Richard Youle’s laboratory. Narendra

et al (2008) observed that parkin is targeted to damaged

mitochondria in a PINK1-dependent manner and induces

their degradation by mitophagy, a selective mode of
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autophagy to dispose of dysfunctional mitochondria. When

CCCP (carbonyl cyanide 3-chlorophenylhydrazone), an

uncoupling agent that dissipates the mitochondrial

membrane potential, is added to HeLa cells that do not

express endogenous parkin, overexpressed parkin is

recruited to mitochondria within 1 h, and mitochondria are

cleared from parkin-expressing cells upon prolonged

exposure to CCCP. As outlined above, dissipation of the

mitochondrial membrane potential by CCCP leads to the

accumulation of full-length PINK1 at the outer

mitochondrial membrane, which is essential for the

mitochondrial translocation of parkin (Figure 2; Geisler

et al, 2010a; Narendra et al, 2010b; Vives-Bauza et al, 2010;

Seibler et al, 2011). Strikingly, the presence of membrane-

localized PINK1 is sufficient to recruit parkin, since PINK1

targeted to peroxisomes or lysosomes recruits and activates

parkin on the respective organelles (Lazarou et al, 2012). In

an effort to elucidate the mechanism of parkin-induced

mitophagy, several cofactors of this pathway have been

identified. Selective autophagy requires specific labelling of

the substrates destined for degradation, such as

ubiquitination, and subsequent binding of adaptor proteins

to recruit the autophagic machinery to the tagged cargo

(reviewed in Kirkin et al, 2009). The signalling adaptor

protein p62 (also termed as SQSTM1, sequestosome-1),

which links ubiquitinated cargo to the autophagic

machinery by binding to both ubiquitin and LC3, has been

described as an essential factor for parkin-induced mitophagy

(Ding et al, 2010; Geisler et al, 2010a; Lee et al, 2010b).

However, two studies reported that only perinuclear

clustering of mitochondria, but not mitophagy was

impaired in fibroblasts from p62 KO mice (Narendra et al,

2010c; Okatsu et al, 2010). The ubiquitin-binding deacetylase

HDAC6 has also been implicated in parkin-mediated

mitophagy by promoting autophagosome–lysosome fusion

(Lee et al, 2010b). Ambra1 (activating molecule in Beclin-

regulated autophagy) was recently identified as a parkin-

interacting protein that promotes autophagic clearance of

mitochondria by activating class III PI3K, which is essential

for the formation of phagophores (Van Humbeeck et al, 2011).

Is parkin-mediated ubiquitination required for mitophagy

and which target(s) and mode(s) of ubiquitination are im-

plicated in this process? An increase in ubiquitinated proteins

has indeed been detected at mitochondria upon CCCP treat-

ment in parkin-expressing cells but not in cells lacking

functional parkin (Geisler et al, 2010a; Lee et al, 2010b;

Matsuda et al, 2010; Okatsu et al, 2010; Chan et al, 2011).

A quantitative proteomic approach revealed a significant

increase in both Lys48- and Lys63-linked poly-

ubiquitination at mitochondria of CCCP-treated HeLa cells

overexpressing parkin (Chan et al, 2011). Mitochondrial

proteins most severely reduced in these cells included the

fusion proteins Mfn1 and Mfn2, the mitochondrial transport

proteins Miro1 and Miro2, and the import receptor subunit

TOM70 (Chan et al, 2011). Removal of Mfn1/2 may facilitate

the sequestration and clearance of mitochondria by

increasing mitochondrial fission, which precedes mitophagy

(Twig et al, 2008; Tanaka et al, 2010). Degradation of Miro1

and Miro2 blocks mitochondrial transport and thus favours

clustering of damaged mitochondria (Wang et al, 2011d; Liu

et al, 2012). Mfn2 has been shown to be directly involved in

mitochondrial transport by interacting with Miro1/2 and
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Figure 2 Mechanism of PINK1- and parkin-induced mitophagy. (A) When the mitochondrial membrane potential is high, PINK1 is imported
into mitochondria, proteolytically processed and rapidly degraded, resulting in mitochondria with low levels of endogenous PINK1 under basal
conditions. (B) Under conditions of low membrane potential, for example, after uncoupling with CCCP, full-length PINK1 accumulates on the
mitochondrial surface, which is essential for the translocation of parkin to mitochondria. Parkin then ubiquitinates mitochondrial proteins at
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Milton (Misko et al, 2010), thus by decreasing Mfn1/2 and

Miro1/2 protein levels parkin can affect both mitochondrial

dynamics and transport. Notably, proteasomal degradation of

outer mitochondrial membrane proteins seems to be a

prerequisite of parkin-dependent mitophagy, as inhibition of

the proteasome abrogates mitophagy (Tanaka et al, 2010;

Chan et al, 2011; Yoshii et al, 2011). However, degradative

ubiquitination of Mfn1 and Mfn2 (Tanaka et al, 2010) or non-

degradative ubiquitination of VDAC1 (Geisler et al, 2010a) is

not essential for parkin-induced mitophagy, since this

pathway is not impaired in fibroblasts from Mfn1/2 or

VDAC1/3 KO mice, indicating that either the essential

substrate(s) for parkin-mediated ubiquitination has yet to

be identified, or rather widespread ubiquitination of

mitochondrial proteins facilitates mitophagy (Narendra

et al, 2010a; Tanaka et al, 2010; Chan et al, 2011). In

conclusion, remodelling of the outer mitochondrial

membrane by ubiquitin in response to CCCP treatment

serves at least two functions: proteasomal degradation of

mitochondrial proteins and attracting ubiquitin-binding

proteins that recruit the autophagic machinery. Whether

PINK1 and parkin interact directly, and if PINK1

phosphorylates parkin and/or parkin ubiquitinates PINK1 is

a controversial issue. Some studies provided evidence for

such a scenario, others not (Moore, 2006; Kim et al, 2008;

Shiba et al, 2009; Um et al, 2009; Sha et al, 2010; Vives-Bauza

et al, 2010; Lazarou et al, 2012).

The pathophysiological relevance of mitophagy in PD

In favour of a relevant role of mitophagy in the pathogenesis

of PD, pathogenic mutations in both parkin and PINK1

compromise distinct steps in the mitophagic pathway

(Geisler et al, 2010a, b; Kawajiri et al, 2010; Lee et al,

2010b; Matsuda et al, 2010; Narendra et al, 2010b, c; Okatsu

et al, 2010; Vives-Bauza et al, 2010; Chan et al, 2011; Seibler

et al, 2011). However, most of the studies on PINK1/parkin-

induced mitophagy used the protonophore CCCP or the

ionophore valinomycin to induce mitophagy in PINK1/

parkin-overexpressing tumour cells lines or mouse

embryonic fibroblasts. Thus, the major critical issues are

whether this phenomenon occurs under pathophysiological

stress conditions with endogenous expression levels of parkin

and PINK1 and whether an impairment of mitophagy

contributes to neuronal dysfunction and cell death in PD.

So far, studies addressing these important questions did not

provide conclusive and coherent answers. It has been

reported that parkin is recruited to mitochondria in cultured

cells overexpressing a catalytically inactive form of the

mitochondrial helicase Twinkle, suggesting that parkin can

target mitochondria with mtDNA deletions (Suen et al, 2010).

In the same study, it was observed that long-term

overexpression of parkin in heteroplasmic cybrid cells

induces selective elimination of mitochondria with

mutations in the cytochrome c oxidase subunit I gene (Suen

et al, 2010). To test for parkin-induced mitophagy in vivo,

Larsson and coworkers made use of a mouse model of

progressive parkinsonism caused by DA neuron-specific

loss of the mitochondrial transcription factor TFAM, which

is essential for mtDNA maintenance and transcription

initiation at mtDNA promoters (Ekstrand et al, 2007). These

mice display severe respiratory chain deficiency and

accumulation of mitochondrial aggregates, however, no

evidence was found for mitochondrial translocation of

parkin or parkin-induced mitophagy (Sterky et al, 2011).

Another crucial aspect concerning the mitophagy pathway

seem to be the bioenergetic status of the cells analysed.

Berman and coworkers observed that after CCCP treatment

parkin efficiently translocates to uncoupled mitochondria in

tumour cells, but not in rat primary cortical or striatal/mid-

brain neurons (Van Laar et al, 2011). Typically, tumour-

derived cultured cells, such as HeLa cells, do not depend on

oxidative phosphorylation, as they generate ATP preferentially

by aerobic glycolysis, which can provide a biosynthetic

advantage during cell proliferation (reviewed in Vander

Heiden et al, 2009 and Cairns et al, 2011). Remarkably,

when HeLa cells are forced into dependence on oxidative

phosphorylation by culturing in glucose-free galactose cell

culture medium, parkin no longer translocates to uncoupled

mitochondria (Van Laar et al, 2011). In contrast to the latter

study, accumulation of overexpressed YFP-parkin at axonal

mitochondria was recently observed in rat hippocampal

neurons treated with the complex III inhibitor antimycin A

(Wang et al, 2011d). As already mentioned above, Schwarz

and coworkers could demonstrate that the mitochondrial

recruitment of parkin decreases mitochondrial motility as a

consequence of parkin-dependent proteasomal degradation of

Miro. This mitochondrial arrest may represent an early step of

mitophagy, however, whether arrested mitochondria in this

model are indeed eliminated by the mitophagy pathway has

not been demonstrated. As a conclusion, in neurons that

depend on mitochondrial respiration for energy production

induction of mitophagy may be more restrictive and possibly

regulated in a more complex manner in comparison with

tumour cells.

Parkin, PINK1, and mitochondrial dynamics: an impact

on fusion or fission?

Although mitochondria appear as solitary, static, bean-

shaped double-membrane units in electron micrographs,

life-cell imaging revealed that mitochondria are highly dy-

namic organelles which can change their shape, size, and

subcellular localization. These dynamic processes are regu-

lated by mitochondrial fusion, fission, and transport along

cytoskeletal tracks. Depending on whether fusion or fission

predominates, mitochondria form highly interconnected tub-

ular networks or fragmented, rod-like/spherical structures.

The last decade has witnessed remarkable progress in the

identification and characterization of the basic mechanisms

that govern mitochondrial fusion and fission. The core ma-

chinery mediating mitochondrial fusion and fission consists

of dynamin-like GTPases, which are tightly regulated at

various levels (reviewed in Detmer and Chan, 2007;

Westermann, 2010) (Soubannier and McBride, 2009;

Campello and Scorrano, 2010; and Oettinghaus et al, 2012).

Mitofusins (Mfn1 and Mfn2) induce outer mitochondrial

membrane fusion, whereas OPA1 mediates fusion of the

inner membrane. Mitochondrial fission is dependent on the

cytosolic GTPase Drp1, which is recruited to prospective

fission sites upon activation, and involves additional fission

factors, such as Mff, Mief1, and Fis1. In addition to

characterizing the fusion and fission machinery at a

molecular level, the impact of mitochondrial dynamics on

key cellular processes, such as bioenergetics, apoptosis,

autophagy, quality control and stress response pathways is
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still being explored. Beyond any doubt, dysregulation of

mitochondrial dynamics can cause or at least contribute to

the pathogenesis of various neurological disorders (reviewed

in Chan, 2006; Knott et al, 2008; Oettinghaus et al, 2012; and

Pilsl and Winklhofer, 2012). Notably, germline mutations in

the Mfn2 gene are responsible for Charcot-Marie-Tooth type

2A, a peripheral neuropathy affecting both sensory and motor

neurons (Zuchner et al, 2004), whereas mutations in the

OPA1 gene cause autosomal dominant optic atrophy

(Alexander et al, 2000; Delettre et al, 2000).

Alterations in mitochondrial dynamics have been docu-

mented in several genetic PD models. Specifically, in cultured

mammalian cells and primary neurons the acute loss of

parkin or PINK1 function causes Drp1-dependent mitochon-

drial fragmentation along with a decrease in the mitochon-

drial membrane potential and ATP production (Exner et al,

2007; Dagda et al, 2009; Lutz et al, 2009; Sandebring et al,

2009; Weihofen et al, 2009; Cui et al, 2010; Wang et al, 2011a).

This phenotype can be rescued by increasing mitochondrial

fusion (enhanced expression of Mfn2 or OPA1) or decreasing

fission (enhanced expression of dominant negative Drp1)

(Dagda et al, 2009; Lutz et al, 2009; Sandebring et al, 2009;

Cui et al, 2010). In contrast to mammalian models, the

phenotype of parkin- or PINK1-deficient flies can be

reverted by increasing mitochondrial fission or decreasing

fusion (Deng et al, 2008a; Poole et al, 2008; Yang et al, 2008).

From the observations in the fly model, it was concluded that

parkin and PINK1 promote mitochondrial fission. However,

in mammalian cells the increased expression of parkin

or PINK1 efficiently protects the mitochondrial network

from fragmentation induced by cellular stress or Drp1

overexpression (Lutz et al, 2009; Sandebring et al, 2009;

Bouman et al, 2011). A possible explanation for the obvious

discrepancies are differences between mammals and

Drosophila to cope with the loss of parkin or PINK1

function. Of note, mitochondrial fragmentation is an

immediate response to parkin or PINK1 silencing and is

more pronounced after a transient knockdown. Thus, it

appears that compensatory strategies can be induced to

prevent irreversible cellular damage in parkin- or PINK1-

deficient cells. In line with this scenario, we observed that

mitochondrial fragmentation occurs in cultured Drosophila

S2 cells early upon parkin or PINK1 silencing, but is rapidly

followed by hyperfusion (Lutz et al, 2009). Mitochondrial

fusion may be activated in an attempt to dilute dysfunctional

mitochondria and to achieve complementation with

functional mitochondria. However, this mode of

compensation does not promote elimination of damaged

mitochondria, explaining why postmitotic cells in tissues

with high energy demands are affected in parkin- or PINK1-

deficient flies. We did not observe a hyperfusion phenotype

upon knocking down parkin or PINK1 expression in

mammalian cells; thus, the compensatory mechanisms

seem to be different to those in fly cells. In this context, it

is important to note that a stable loss of parkin or PINK1 in

mammalian cells can obviously be compensated under basal

conditions, consistent with the fact that parkin- or PINK1-

deficient mice do not show major alterations in

mitochondrial morphology. However, parkin- or PINK1-

deficient cells including patients’ fibroblasts are much more

vulnerable to stress-induced mitochondrial fragmentation,

suggesting that the compensatory strategies are not

sufficient to prevent mitochondrial damage under cellular

stress (Hoepken et al, 2007; Mortiboys et al, 2008; Grunewald

et al, 2010).

The effects of PINK1 and parkin on mitochondrial dy-

namics may be secondary to alterations in mitochondrial

bioenergetics and/or mitochondrial depolarization (Morais

et al, 2009; Sandebring et al, 2009). In line with this

notion, many phenotypes of PINK1-deficient flies, such as

male sterility, flight muscle degeneration, and synaptic

transmission defects, are rescued by Ndi1p, a yeast NADH

dehydrogenase that can bypass electron transport in complex

I in mammalian cells. Complex I deficiency in PINK1 mutant

flies is not rescued by increasing mitochondrial fission,

indicating that PINK1-associated complex I dysfunction acts

at least partly upstream of mitochondrial remodelling (Vilain

et al, 2012). Interestingly, the loss of parkin function in flies

does not compromise complex I activity and Ndi1p has no

effect on the phenotype of parkin-deficient flies, although

parkin can rescue the PINK1 phenotype (Vilain et al, 2012).

These findings add evidence to the idea that in addition to a

simple linear PINK1/parkin pathway, there may exist parallel

pathways and independent functions of parkin and PINK1

(Figure 3). Indeed, parkin can prevent cytochrome c release

induced by pro-apoptotic BH3 domains, whereas PINK1 does

not have this activity (Berger et al, 2009).

Parkin has been reported to directly influence the mito-

chondrial fusion and fission machinery, which makes it even

more difficult to decipher the net effect of parkin on mito-

chondrial dynamics. In the context of parkin-induced

mitophagy, it has been observed that parkin mediates

ubiquitination and proteasomal degradation of Mfn1 and

Mfn2 in response to mitochondrial uncoupling (Poole et al,

2008; Gegg et al, 2010; Tanaka et al, 2010; Ziviani et al, 2010;

Chan et al, 2011; Glauser et al, 2011). In contrast to these

studies, parkin has been found to induce the proteasomal

degradation of the fission-promoting proteins Drp1 or Fis1

(Cui et al, 2010; Wang et al, 2011a). How can these discrepant

observations be explained? Conceptually, parkin may

modulate mitochondrial dynamics in a context-specific and

possibly cell type-specific manner. An attractive model would

be that under moderate stress conditions with only minor

mitochondrial damage parkin prevents mitochondrial

fragmentation and favours mitochondrial fusion with the

remaining healthy mitochondrial population, allowing
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Figure 3 Mitochondrial functions of PINK1 and parkin. (A) A
linear pathway with PINK1 acting upstream of parkin is implicated
in mediating degradation of damaged mitochondria via mitophagy.
(B) PINK1 and parkin also affect mitochondrial functions via
parallel pathways, possibly by acting on mitochondria indepen-
dently from each other.
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functional complementation. However, when mitochondria

are irreversibly damaged in response to severe stress, parkin

may promote mitochondrial fission, which facilitates

sequestration and elimination of damaged mitochondria via

mitophagy.

DJ-1: an ROS-sensitive and ROS-protective protein

Loss-of-function mutations in the DJ-1 gene are a rare cause

of autosomal recessive parkinsonism (Bonifati et al, 2003).

DJ-1, a ubiquitously expressed protein of 189 amino acids,

belongs to an evolutionarily conserved superfamily and

shares structural similarities to the stress-inducible E. coli

chaperone Hsp31 (Lee et al, 2003; Lucas and Marin, 2007).

DJ-1 forms dimers with extensive contacts covering 35% of

the molecular surface of each molecule (Wilson et al, 2003).

A wide range of obviously unrelated DJ-1 functional activities

have been reported, however, there is consensus on the fact

that DJ-1 is responsive to and protective against oxidative

stress (reviewed in Kahle et al, 2009 and Cookson, 2010a).

Oxygen species react with the sulphydryl group of a

conserved cysteine residue at position 106 to form sulphinic

acid, giving rise to a shift in the isoelectric point towards

more acidic values (Mitsumoto et al, 2001; Canet-Aviles et al,

2004). Importantly, this cysteine residue is essential for the

stress-protective activity of DJ-1 (Canet-Aviles et al, 2004;

Taira et al, 2004; Meulener et al, 2006; Blackinton et al, 2009).

DJ-1 KO mice do not display nigrostriatal degeneration,

however, they are impaired in scavenging mitochondrial

H2O2, which has been attributed to the function of DJ-1 as

an atypical peroxiredoxin-like peroxidase (Andres-Mateos

et al, 2007). DJ-1 is mostly found in the cytoplasm,

but oxidative stress can induce its translocation to the

outer mitochondrial membrane (Canet-Aviles et al, 2004;

Blackinton et al, 2009; Junn et al, 2009). Moreover, cell

fractionation and immunogold electron microscopy revealed

that endogenous Drp1 can be detected in the mitochondrial

matrix and intermembrane space (Zhang et al, 2005). It has

been suggested that parkin, PINK1, and DJ-1 form a complex

with E3 ligase activity to degrade misfolded proteins (Xiong

et al, 2009); however, size exclusion chromatography did not

support such a scenario, as parkin, PINK1, and DJ-1 were

separated into distinct complexes (Thomas et al, 2011).

Concerning the maintenance of mitochondrial integrity,

DJ-1 shares some features with PINK1 and parkin. Similarly

to PINK1 and parkin, DJ-1 increases resistance against

mitochondrial toxins and decreases mitochondrial

fragmentation in response to mitochondrial damage (Canet-

Aviles et al, 2004; Kim et al, 2005; Zhang et al, 2005; Irrcher

et al, 2010; Krebiehl et al, 2010; Thomas et al, 2011). DJ-1

deficiency in cultured cells, primary neurons and patients’

fibroblasts or lymphoblasts causes mitochondrial

fragmentation and depolarization, which can be reverted by

parkin or PINK1, but DJ-1 cannot rescue the PINK1- or

parkin-deficient phenotype (Exner et al, 2007; Irrcher et al,

2010; Krebiehl et al, 2010; Thomas et al, 2011). Mitochondrial

alterations induced by DJ-1 loss of function can be prevented

by antioxidants, indicating that increased levels of oxidative

stress account for the mitochondrial phenotypes (Irrcher

et al, 2010; Thomas et al, 2011). Indeed, brain or skeletal

muscle mitochondria from DJ-1 KO mice display increased

formation of ROS (Andres-Mateos et al, 2007; Irrcher et al,

2010).

Notably, DJ-1 maintains its protective activity in the

absence of PINK1, thus DJ-1 appears to work rather indepen-

dently from PINK1 and parkin in a parallel pathway (Thomas

et al, 2011; Haque et al, 2012).

a-Synuclein: a protein of structural plasticity that links

sporadic and genetic PD

a-Synuclein is of particular relevance to the etiopathogenesis

of PD. The identification of mutations in the gene encoding a-

synuclein (SNCA) as a cause of familial PD launched the

‘molecular era’ of PD research (Polymeropoulos et al, 1997).

Shortly after this discovery, a-synuclein was found to be a

major component of Lewy bodies (Spillantini et al, 1997). So

far, three missense mutations in the a-synuclein gene and

genomic duplications or triplications have been identified

in patients with autosomal dominant parkinsonism

(Polymeropoulos et al, 1997; Kruger et al, 1998; Singleton

et al, 2003; Chartier-Harlin et al, 2004; Farrer et al, 2004;

Ibanez et al, 2004; Zarranz et al, 2004). In addition, genome-

wide association studies revealed that several single-

nucleotide polymorphisms in the SNCA gene are strongly

associated with PD risk (Satake et al, 2009; Simon-Sanchez

et al, 2009; Edwards et al, 2010; Hamza et al, 2010;

International Parkinson Disease Genomics Consortium et al,

2011).

a-Synuclein is a 140 amino-acid protein that is abundantly

expressed in the central nervous system of vertebrates. It

belongs to the synuclein family, which also includes b- and g-

synuclein. At the N-terminal region it harbours 7 imperfect

repeats of 11 amino acids containing a KTKGEV motif which

mediate formation of amphipathic a-helices upon membrane

binding (Davidson et al, 1998; Eliezer et al, 2001). The central

NAC (non-amyloid b component of Alzheimer’s disease

amyloid plaques) domain is responsible for the aggregation

propensity of a-synuclein (Giasson et al, 2001). The acidic

C-terminal domain contains several phosphorylation sites

and influences the aggregation behaviour of a-synuclein

(Okochi et al, 2000; Fujiwara et al, 2002; Tofaris et al,

2006). a-Synuclein is an intrinsically disordered protein in

aqueous solution, however, depending on the environment

it displays considerable structural flexibility, including

membrane-bound a-helical structures, oligomers,

protofibrils, and amyloid fibrils, characterized by a cross-b-

sheet structure (reviewed in Volles and Lansbury, 2003;

Beyer, 2007; and Uversky, 2010). It has recently been

reported that endogenous a-synuclein isolated from

cultured cells and red blood cells under non-denaturing

conditions adopts a helically folded tetrameric structure

with enhanced lipid-binding capacity and markedly reduced

aggregation propensity in comparison with a-synuclein

monomers, suggesting that a-synuclein tetramers are the

physiological species (Bartels et al, 2011). Formation of

stable tetramers with helical secondary structure was also

described for recombinantly expressed human a-synuclein in

the absence of lipid bilayers or micelles (Wang et al, 2011c).

However, these findings have been disputed in a joint

publication of six different groups (Fauvet et al, 2012).

Using a-synuclein standards of well-characterized

conformational and oligomeric states and applying various

methods such as native and denaturing gel electrophoresis

techniques, size exclusion chromatography, and an oligomer-

specific ELISA, the authors of this study demonstrated that
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native a-synuclein from human, rat, and mouse brains,

several mammalian cell lines, and human red blood cells

exhibit identical migration patterns and apparent molecular

weight as unfolded monomeric recombinant a-synuclein.

Thus, the results of the latter study question the existence

of physiological a-synuclein tetramers, a critical issue for the

development of a-synuclein-specific therapeutic strategies,

which mostly aim at preventing a-synuclein oligomerization.

It has now widely been accepted that not the final fibrillar

a-synuclein aggregates but rather oligomeric prefibrillar fold-

ing intermediates are the major toxic species (reviewed in

Lansbury and Lashuel, 2006; Cookson and van der Brug,

2008; and Winklhofer et al, 2008). However, the mechanisms

of a-synuclein-induced toxicity are still under discussion,

hampered by the difficulties in discriminating primary and

specific effects from secondary and/or unspecific effects

caused by overloading cells with a misfolding-prone

protein. Upon overexpression of wild-type or mutant a-

synuclein in cellular and animal models alterations in

various cellular processes have been reported, including

proteasomal and lysosomal degradation, autophagy, and

vesicular transport (reviewed in Cookson, 2009; Waxman

and Giasson, 2009; Sulzer, 2010; Venda et al, 2010; and

Vekrellis et al, 2011). The physiological function of a-

synuclein has also largely remained elusive. Its enrichment

in presynaptic terminals and its binding to vesicles suggests a

role in vesicle dynamics and synaptic plasticity (reviewed in

Auluck et al, 2010). A common theme emerging from studies

on the function and dysfunction of a-synuclein is that it

appears to affect membrane fusion events (Figure 4). Mice

lacking a-synuclein were reported to show increased

dopamine release upon stimulation, pointing to a role of a-

synuclein in negatively regulating dopamine neurotransmis-

sion (Abeliovich et al, 2000; Yavich et al, 2004). Similarly, in

a-, b-, and g-synuclein triple KO mice, an elevated evoked

release of dopamine in the nigrostriatal system was observed

(Anwar et al, 2011). When a-synuclein is overexpressed

in PC12 cells evoked catecholamine release is inhibited

and docked vesicles accumulate at the plasma membrane

(Larsen et al, 2006). In primary hippocampal neurons, mild

overexpression of a-synuclein in the range of gene

duplication or triplication decreases neurotransmitter

release, probably by reducing the size of the synaptic

vesicle recycling pool (Nemani et al, 2010). Similarly, virus-

mediated expression of a-synuclein in the SN of adult rats

causes a reduction in striatal dopamine release (Lundblad

et al, 2012). a-Synuclein has been reported to cooperate with

presynaptic cysteine-string protein-a (CSPa) to maintain

neuronal integrity (Chandra et al, 2005). CSPa is a co-

chaperone of the Hsp40 family involved in the assembly of

SNARE complexes, the core components of a conserved

machinery mediating synaptic vesicle membrane fusion

during exocytosis (Sharma et al, 2011). Strikingly,

neurodegeneration observed in CSPa-deficient mice could

be rescued by transgenic expression of a-synuclein,

whereas deletion of endogenous a-synuclein enhanced the

neurodegenerative phenotype (Chandra et al, 2005).

Concerning the mechanism of this functional interaction it

has been demonstrated that a-synuclein directly promotes the

assembly of SNARE complexes by simultaneous binding to

phospholipids via its N-terminal region and to synaptobrevin-

2 via its C-terminal domain (Burre et al, 2010; Figure 4).

In vitro, a-synuclein preferentially binds to small vesicles

containing acidic phospholipids and induces ordering of

phospholipids at sites of packing defects in the bilayer caused

by curvature stress (Davidson et al, 1998; Kamp and Beyer,

2006). Local defects in a membrane are required for the

formation of a fusion stalk, thus, annealing of a-synuclein

to those defects should prevent premature membrane fusion.

Indeed, fusion of small unilamellar vesicles is inhibited in the

presence of recombinant a-synuclein, and overexpression of

a-synuclein in cultured cells and C. elegans reduces the

fusion rate of mitochondria (Kamp et al, 2010). Notably,

mitochondrial fragmentation induced by overexpression of

a-synuclein can be prevented by PINK1, parkin, or DJ-1 but

not by their pathogenic mutants (Kamp et al, 2010).

Mitochondrial fragmentation upon increased a-synuclein

expression was also observed in another study using

cultured cells and primary neurons (Nakamura et al, 2011).

In this study, it was reported that a-synuclein causes an

increase in Drp1-independent mitochondrial fission, which

is not accompanied by alterations in the morphology of

other cellular organelles. Interestingly, a-synuclein-induced

mitochondrial fragmentation is not a consequence of

mitochondrial depolarization or respiration deficits, it

occurs without overt toxicity and is independent of proteins

of the mitochondrial fusion and fission machinery (Kamp

et al, 2010; Nakamura et al, 2011). In conclusion, both

the increased expression of a-synuclein and the loss of

a-synuclein function may impact on membrane fusion,

explaining the observed effects of a-synuclein on

neurotransmitter release. Similarly, the ER-to-Golgi vesicle

trafficking defect observed in several models of a-synuclein

overexpression could be attributed to impaired fusion of

vesicles at the Golgi membrane (Gitler et al, 2008; Figure 4).

There is evidence for a preferential binding of a-synuclein

to mitochondria (Nakamura et al, 2008), and localization of

a-synuclein at mitochondria or even within mitochondria has

been reported (Li et al, 2007; Cole et al, 2008; Devi et al, 2008;

Parihar et al, 2008; Shavali et al, 2008; Zhang et al, 2008;

�-Synuclein

Impaired membrane
fusion
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trafficking
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synaptic
plasticity
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Figure 4 Physiological and pathophysiological functions of a-sy-
nuclein on membrane dynamics. Effects of a-synuclein on mem-
brane fusion events can explain why both an increase of a-
synuclein expression and a loss of a-synuclein have adverse effects.
Overexpression of a-synuclein causes ER/Golgi vesicle trafficking
defects and mitochondrial fragmentation, whereas a-synuclein de-
ficiency affects SNARE complex assembly.
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Kamp et al, 2010; Nakamura et al, 2011). In various

models of a-synuclein overexpression structural alterations

of mitochondria, increased oxidative stress, and/or

bioenergetic defects have been observed (Hsu et al, 2000;

Martin et al, 2006; Stichel et al, 2007; Devi et al, 2008; Parihar

et al, 2008; Liu et al, 2009; Chinta et al, 2010; Loeb et al, 2010;

Su et al, 2010; Choubey et al, 2011). a-Synuclein KO mice are

resistant or less sensitive to mitochondrial toxins (Dauer et al,

2002; Schluter et al, 2003; Klivenyi et al, 2006) and were

reported to have qualitative and quantitative lipid

abnormalities with a decrease in cardiolipin content (Ellis

et al, 2005). Vice versa, a-synuclein-overexpressing mice are

more vulnerable to mitochondrial toxins (Orth et al, 2003;

Song et al, 2004; Shavali et al, 2008), albeit this is not a

consistent finding (Rathke-Hartlieb et al, 2001; Dong et al,

2002). a-Synuclein toxicity in cellular models and in

Drosophila is mitigated by the mitochondrial chaperone

TRAP1, supporting the notion that a-synuclein affects

mitochondrial function (Butler et al, 2012). a-Synuclein has

also been reported to increase autophagy and mitophagy in

primary cortical neurons, and depletion of parkin showed

beneficial effects on neuronal survival, which led the authors

to conclude that inhibition of excess mitophagy is protective

in this model (Choubey et al, 2011). This observation would

be in line with a double transgenic mouse model in which the

absence of parkin delayed the neurodegenerative phenotype

caused by A30P a-synuclein overexpression (Fournier et al,

2009). It should be mentioned that a-synuclein has also been

found to impair autophagy (Winslow et al, 2010). The effect

of parkin on a-synuclein-induced pathology is controversial

as well: in various models, a protective effect of parkin on

a-synuclein-induced alterations was observed (Petrucelli

et al, 2002; Yang et al, 2003; Lo Bianco et al, 2004; Yasuda

et al, 2007; Khandelwal et al, 2010). Furthermore, in another

mouse model with a combined transgenic expression of

A30P/A53T a-synuclein and a targeted deletion of parkin,

mitochondrial pathology was more prominent in comparison

with single transgenic mice (Stichel et al, 2007).

A striking feature of a-synuclein is its transmissibility to

neighbouring cells (reviewed in Brundin et al, 2010; Frost and

Diamond, 2010; Steiner et al, 2011; and Hansen and Li, 2012).

The first evidence for this phenomenon came from studies in

PD patients that received neural grafts derived from fetal

midbrain tissue. At autopsy between 10 and 16 years after

transplantation, Lewy body pathology was not only observed

in the host striatal neurons but also in the grafted neurons of

some PD patients (Kordower et al, 2008a, b; Li et al, 2008,

2010; Mendez et al, 2008). Studies in mice have essentially

supported the phenomenon of intercellular a-synuclein

transfer. Wild-type neuronal stem cells or embryonic

neurons grafted into the brain of a-synuclein-overexpressing

transgenic mice can take up host a-synuclein and develop

inclusions (Desplats et al, 2009; Hansen et al, 2011). How can

a-synuclein spread from cell to cell? Obviously, a-synuclein is

secreted from cultured cells by exocytotic vesicles (Lee et al,

2005; Jang et al, 2010) or via exosomes, which are endosome-

derived vesicles secreted during fusion of multivesicular

bodies with the plasma membrane (Emmanouilidou et al,

2010; Alvarez-Erviti et al, 2011). The mechanism by which a-

synuclein is taken up by recipient cells is largely unknown.

Passive diffusion, endocytosis, and exosome-mediated uptake

have been observed, and it is highly likely that the mode of

cell entry depends on the type of a-synuclein species to be

taken up (Sung et al, 2001; Desplats et al, 2009; Park et al,

2009; Emmanouilidou et al, 2010; Hansen et al, 2011).

Internalized a-synuclein fibrils generated from recombinant

a-synuclein promote aggregation of endogenous a-synuclein

in mouse primary hippocampal neurons by a seeding activity

and cause synaptic dysfunction and ultimately cell death

(Volpicelli-Daley et al, 2011). Remarkably, in young

asymptomatic A53T a-synuclein transgenic mice, intra-

cerebral injection of brain homogenates from older

symptomatic transgenic mice accelerates a-synuclein

aggregation and neuronal degeneration, even at regions far

beyond injection sites, a phenomenon also observed after

injection of synthetic a-synuclein fibrils (Luk et al, 2012).

The propagation of misfolded protein species by similar

mechanisms has also been observed for other proteins

associated with neurodegenerative disease, like tau, Ab
peptide and huntingtin, and thus may reflect a unifying

mechanism of disease progression.

LRRK2: a GTPase-regulated kinase or a kinase-regulated

GTPase?

Mutations in the gene encoding LRRK2 cause autosomal

dominant parkinsonism and are the most common cause of

familial PD (Paisan-Ruiz et al, 2004; Zimprich et al, 2004).

Moreover, genome-wide association studies identified genetic

variants in the LRRK2 gene as risk factors for sporadic PD

(Satake et al, 2009; Simon-Sanchez et al, 2009; Hamza et al,

2011; International Parkinson Disease Genomics Consortium

et al, 2011). LRRK2 is a 2257 amino-acid protein that belongs

to the ROCO protein family, characterized by an Roc (Ras of

complex proteins) domain with GTPase activity and a COR

(C-terminal of Roc) domain. A kinase domain with sequence

similarities to RIPKs (receptor-interacting serine/threonine

protein kinases) and MLKs (mixed lineage kinases), a

subclass of the MAPKKK (mitogen-activated protein kinase

kinase kinases) family, is located C-terminal to the COR

domain. In addition, LRRK2 harbours several protein–

protein interaction domains, such as a WD40 domain, leu-

cine-rich repeats (LRRs), and an ankyrin domain. To date, six

missense mutations have been demonstrated to segregate

with familial PD, which cluster to the Roc, COR, and kinase

domain.

The modular structure of LRRK2 suggests a role as a

signalling protein, which can act as a kinase, GTPase, and/

or scaffolding protein. LRRK2 forms dimers, and dimer for-

mation appears to be essential for full catalytic activity (Deng

et al, 2008b; Gotthardt et al, 2008; Greggio et al, 2008; Sen

et al, 2009). LRRK2 shows a weak kinase activity in vitro

mediating autophosphorylation and phosphorylation of

generic substrates (i.e., myelin basic protein) or putative

substrates, such as members of the ERM protein family

(ezrin/radixin/moesin) that anchor the actin cytoskeleton

to the plasma membrane, kinases of the MAP and Ste20

serine/threonine kinase families, 4E-BP, the eukaryotic

translation initiation factor 4E-binding protein, or the

forkhead box transcription factor FoxO1 (West et al, 2005;

Gloeckner et al, 2006, 2009; Jaleel et al, 2007; Imai et al,

2008; Parisiadou et al, 2009; Kanao et al, 2010; Zach et al,

2010). It has been reported that the kinase activity is

regulated by the GTPase activity, however, the Roc domain

can be phosphorylated by the kinase domain, suggesting the
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possibility that not the kinase but the GTPase activity is the

main output of LRRK2 and/or that both activities are

regulated in a reciprocal manner (Greggio et al, 2008, 2009;

Kamikawaji et al, 2009; Gloeckner et al, 2010; Liu et al, 2010;

Webber et al, 2011). This hypothesis is in line with the recent

identification of a GTPase-activating protein, ArfGAP1, which

enhances the GTPase activity of LRRK2 but is also

phosphorylated by LRRK2 (Stafa et al, 2012; Xiong et al,

2012).

The physiological and pathological functions of LRRK2 are

still incompletely understood. It has been reported that

pathogenic LRRK2 mutations increase kinase activity and/

or decrease GTPase activity. Overexpression of pathogenic

LRRK2 mutants in cultured cells, primary neurons or rodents

causes cellular toxicity, which is dependent on the kinase

activity (Greggio et al, 2006; Smith et al, 2006; West et al,

2007; Ho et al, 2009; Dusonchet et al, 2011). Indeed,

inhibitors of LRRK2 kinase are protective in in-vitro and in-

vivo models of LRRK2-induced neurodegeneration (Lee et al,

2010a; Liu et al, 2011a). From diverse cellular and animal

models of LRRK2 loss and gain of function it emerged that

LRRK2 can influence neurite outgrowth, cytoskeleton

dynamics, vesicle trafficking, translational control,

endocytosis, autophagy, mitochondrial function, MAPK and

Wnt signalling, and extrinsic (TNFa/FasL) or intrinsic

apoptosis pathways (reviewed in Cookson, 2010b; Berwick

and Harvey, 2011; Daniels et al, 2011; and Tsika and Moore,

2012). Which of these pathways are relevant to the

pathogenesis of PD requires further investigation. Notably,

flies expressing the pathogenic G2019S LRRK2 mutant exhibit

late-onset loss of DA neurons in selected clusters

accompanied by locomotion deficits (Liu et al, 2008; Ng

et al, 2009). In this fly LRRK2 model, coexpression of

human parkin protects against DA neurodegeneration

induced by ageing or rotenone treatment (Ng et al, 2009).

An interesting immunoregulatory function of LRRK2 was

recently reported based on genome-wide association studies

identifying LRRK2 as a major susceptibility gene for inflam-

matory bowel disease (Barrett et al, 2008; Franke et al, 2010).

LRRK2-deficient mice display an increased susceptibility to

experimentally induced colitis (Liu et al, 2011b). LRRK2

which is expressed in macrophages, dendritic cells, and B

lymphocytes can inhibit nuclear translocation of NFAT, a

transcription factor regulating immune responses, by

increasing its interaction with a cytoplasmic NFAT repressor

(Gardet et al, 2010; Liu et al, 2011b). Notably, this activity of

LRRK2 does not involve phosphorylation of NFAT.

So far, little is known about a possible impact of LRRK2 on

mitochondria. Upon overexpression in cultured cells, about

10% of LRRK2 was found at the outer mitochondrial mem-

brane (West et al, 2005). Mitochondrial localization was also

shown for endogenous LRRK2 in mammalian brain tissue by

confocal imaging, subcellular fractionation, and electron

microscopy (Biskup et al, 2006). Mitochondrial pathology

has been observed in aged G2019S LRRK2 transgenic mice

(Ramonet et al, 2011), and the expression of this mutant

aggravates mitochondrial alterations in inducible A53T a-
synuclein transgenic mice (Lin et al, 2009). However, a

similar approach using double transgenic mice did not

provide support for a pathophysiological interaction of

LRRK2 and a-synuclein (Daher et al, 2012). Skin fibroblasts

derived from five patients carrying the G2019S mutation

show a decrease in mitochondrial membrane potential and

total ATP production and a trend towards increased

mitochondrial interconnectivity (Mortiboys et al, 2010). A

recent study reported that overexpression of wild-type LRRK2

and pathogenic LRRK2 mutants in cultured cells and primary

cortical neurons cause mitochondrial fragmentation by

increasing mitochondrial recruitment of Drp1 (Wang et al,

2012). Notably, LRRK2-induced toxicity could be blocked by

decreasing mitochondrial fission or increasing fusion. Further

studies are needed to determine whether these mitochondrial

effects of LRRK2 are direct or indirect and what the

underlying mechanism might be.

Controversies and unanswered questions

Why are SNc DA neurons particularly vulnerable?

A key challenge in the neurodegeneration field has been

to understand the selective vulnerability of neuronal sub-

populations. SNc DA neurons are considered special in terms

of oxidative stress management and calcium homoeostasis.

Sources of ROS in DA neurons are the enzymatic and non-

enzymatic metabolism of cytoplasmic dopamine. Vesicular

dopamine is protected from oxidation, thus, an increase in

oxidation-prone cytoplasmic dopamine is toxic to neurons.

VMAT2 is the vesicular monoamine transporter responsible

for dopamine uptake into presynaptic vesicles, and dysfunc-

tion of VMAT, for example as a consequence of decreased

mitochondrial ATP production, can induce nigrostriatal de-

generation (Caudle et al, 2007). Moreover, the amount of

iron, which can trigger ROS formation via the Fenton

reaction, has been reported to be high in SNc DA neurons,

whereas antioxidative components, such as reduced

glutathione, are expressed at low levels (Kish et al, 1985;

Chinta and Andersen, 2008). Oxidative stress may also arise

from excitotoxicity and mitochondrial dysfunction, which

can trigger a vicious circle. Excitotoxicity results from

overstimulation of glutamate receptors and elicits a cascade

of harmful events including calcium influx that can challenge

the storage capacity of the ER and mitochondria. SNc DA

neurons are vulnerable to excitotoxicity based on rich

glutamatergic input from the subthalamic nucleus. A

decrease in ATP production, for example as a consequence

of mitochondrial dysfunction, can compromise the ATP-

dependent regulation of glutamate receptors favouring their

overstimulation.

Calcium toxicity has been suggested as another determi-

nant of selective vulnerability. Adult ventrolateral SNc DA

neurons engage L-type Cav1.3 calcium channels for rhythmic

pacemaking, in contrast to less vulnerable DA neurons of the

ventral tegmental area which use sodium channels for pake-

macing activity (Chan et al, 2007). Reliance on these L-type

calcium channels increases with age and leads to sustained

elevated cytoplasmic calcium levels, which may stimulate

mitochondrial respiration and ROS production. An imbalance

in calcium homeostasis can be enhanced by mitochondrial

and ER stressors or genetic mutations in stress-protective

genes, resulting in mitochondrial calcium overload, which

impairs ATP synthesis and consequently, ATP-dependent

cellular processes.

Clearly, none of the current hypotheses can sufficiently

explain the selective vulnerability of SNc DA neurons, rather,

a combination of the phenomena described above as well as
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some yet unknown factors are responsible for the preferential

susceptibility of this neuronal population.

Is mitochondrial complex I inhibition a causal factor

for PD?

Generic complex I inhibitors, such as MPTP, rotenone, or

annonacin, can induce parkinsonian syndromes in humans

and animal models, however, it is not clear whether their

mode of action is restricted to complex I inhibition.

Compatible with the complex I inhibition hypothesis, ectopic

expression of Ndi1p, a yeast single-subunit NADH dehydro-

genase that is insensitive to MPTP and rotenone, has been

shown to protect DA neurons from MPTP and rotenone

toxicity in vitro and in vivo (Sherer et al, 2003; Seo et al,

2006; Richardson et al, 2007; Marella et al, 2008). The role of

complex I inhibition in PD has been challenged by a study

using mice that lack functional Ndufs4, a gene encoding a

subunit implicated in assembly and function of complex I.

Ndufs4 KO mice show neuronal degeneration in the

cerebellum, olfactory bulb, and vestibular nuclei, whereas

DA neurons are not affected (Kruse et al, 2008; Quintana

et al, 2010; Choi et al, 2011). Moreover, midbrain primary

cultures derived from Ndufs4 KO mice are not protected

against MPPþ or rotenone, suggesting that toxicity of these

drugs is not caused by complex I inhibition (Choi et al, 2008).

Ndufs4-deficient DA neurons are even more sensitive to

rotenone, and complex I-independent mechanisms have

been reported to contribute to the toxicity of rotenone, such

as microtubule depolymerization (Ren et al, 2005; Choi et al,

2011). However, it was recently shown that complex I activity

is only partially decreased but not abolished in Ndufs4 KO

mice due to the formation of respiratory supercomplexes with

a stabilizing effect of complex III (Calvaruso et al, 2012;

Sterky et al, 2012). This finding can explain why Ndufs4-

deficient neurons are still sensitive to MPTP and rotenone

toxicity. DA neuron-specific conditional Ndufs4 KO mice do

not show overt nigrostriatal degeneration, only a mild

decrease (7.5%) in tyrosine hydroxylase-positive neurons at

24 months of age (Sterky et al, 2012). Nevertheless, striatal

dopamine turnover is increased and dopamine release is

decreased in Ndufs4-deficient mice, which may reflect an

early consequence of mitochondrial dysfunction. These

findings support the notion that complex I deficiency can

contribute to the pathogenesis of PD.

The most convincing link between PD genes and complex I

activity was provided for PINK1. In fact, there is strong

experimental evidence for a central role of complex I in

PINK1-associated mitochondrial pathology. Complex I enzy-

matic activities are reduced in PINK1-deficient mice and flies

(Gautier et al, 2008; Morais et al, 2009). In flies, expression of

the yeast complex I equivalent Ndi1p rescues several PINK1-

deficient phenotypes, and downregulation of complex I

subunits phenocopies some PINK1-associated alterations

(Vilain et al, 2012). A recent screen for genetic modifiers in

PINK1-deficient flies identified Heix, a gene encoding a

prenyltransferase involved in vitamin K2 biosynthesis (Vos

et al, 2012). In the fly model, vitamin K2 was able to rescue

mitochondrial morphological defects and to maintain ATP

production, which has been attributed to its ability to serve as

a mitochondrial electron carrier. The molecular mechanism

of these interactions and its significance in mammalian

models requires further investigation.

How can discrepant findings in Drosophila and

mammalian PD models be explained?

The Drosophila model has contributed valuable insights into

PD pathogenesis. Importantly, it has been helpful to

characterize the function of PD-associated genes and to

identify genetic modifiers, thereby focusing research activ-

ities on key biochemical pathways. The strikingly similar

phenotype of PINK1 and parkin mutant flies has revealed

that parkin acts downstream of PINK1 to maintain mitochon-

drial integrity. Various effects of PINK1 and parkin on mito-

chondria have been described in different models, including

mitochondrial morphology, dynamics, bioenergetics, trans-

port, and quality control. Rather than a single linear pathway

integrating all these effects described, diverse pathways

account for these manifold activities that converge on mito-

chondria. Consistent with this notion, there are different

activities of PINK1 and parkin that are either dependent or

independent on each other.

What is still causing confusion in the field is the fact that

opposing effects are reported from genetic fly and mamma-

lian models. For example, the PINK1 or parkin mutant

phenotypes in Drosophila can be rescued by decreasing

mitochondrial fusion and increasing fission, whereas the

acute loss of PINK1 or parkin in cellular mammalian models

is reverted by increasing mitochondrial fusion or decreasing

fission. A similar phenomenon has been reported for affect-

ing mitochondrial transport. In PINK1 mutant flies, Miro

levels are increased and Miro RNAi can rescue PINK1 mutant

phenotypes (Liu et al, 2012). However, in human cells Miro

levels are decreased in the absence of PINK1 and Miro

overexpression can revert PINK1 deficiency (Weihofen et al,

2009; Liu et al, 2012). One plausible explanation for these

seemingly discrepant findings is that mammalian cells have

elaborate compensatory strategies that may be absent or

different in flies. In fact, compensation can at least partly

explain why genetic PD mouse models lack a striking

phenotype and why patients with mutations in PD genes

develop symptoms only after some decades when coping

mechanisms may be less efficient due to ageing.

Does dysfunctional mitophagy cause PD?

A role of parkin and PINK1 in mitochondrial quality control is

appealing and can explain beneficial mitochondrial effects of

these PD genes in different models. Beyond any doubt,

parkin-induced autophagic removal of mitochondria is a

robust phenomenon in cultured cells treated with mitochon-

drial uncouplers, such as CCCP. Parkin-induced mitophagy is

strictly dependent on PINK1 expression, since parkin cannot

translocate to uncoupled mitochondria in the absence of

PINK1. There is an ongoing discussion as to whether

PINK1/parkin-mediated mitophagy is a physiologically and

pathophysiologically relevant pathway in vivo. The main

criticism is that CCCP is a drastic unphysiological stressor

that causes uncoupling of all mitochondria within seconds.

Parkin-induced mitophagy has mostly been studied in estab-

lished tumour cell lines or mouse embryonic fibroblasts,

which preferentially produce ATP by glycolysis. In contrast,

neurons depend on oxidative phosphorylation for ATP pro-

duction and therefore may not easily discard their mitochon-

dria. In parkin- or PINK1-deficient flies, enlarged aggregated

mitochondria have been observed, however, this is not

necessarily a consequence of defective mitochondrial
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clearance. In fact, it has not been demonstrated conclusively

that the phenotypic alterations in parkin or PINK1 mutant

flies are caused by an impairment of mitophagy. Moreover,

parkin can rescue PINK1 mutant flies, which argues against

defective mitophagy being responsible for the PINK1-defi-

cient phenotype, given that parkin cannot promote mito-

phagy in the absence of PINK1.

Perspective and future directions

Research into the function and dysfunction of PD-associated

genes revealed that at least some of these genes interface with

pathways regulating various aspects of mitochondrial biology

(Figure 5). In fact, there is compelling evidence that mito-

chondrial dysfunction is a common denominator of sporadic

and familial PD. Genome-wide association studies indicated

that genetic variants of the classical PD genes a-synuclein and

LRRK2 increase the risk of developing sporadic PD, adding to

the notion that sporadic and familial disease entities share

common pathways. Emerging evidence suggests that bioe-

nergetic deficits and dysregulation of the mitochondrial qual-

ity control rather than oxidative stress alone are relevant

players in the pathogenesis of PD. Hence, a plethora of

challenging issues remains to be addressed. First, it will be

important to disentangle direct from indirect mitochondrial

effects. Second, results from in-vitro studies should be vali-

dated in suitable in-vivo models to prove the physiological or

pathophysiological relevance of the observed effects. Third,

we need to increase our understanding of the interaction of

disease or susceptibility genes with environmental factors in

triggering and/or promoting neurodegeneration. Most impor-

tantly, the ultimate aim would be to translate basic research

into clinical practice by exploiting mitochondrial pathways as

a rationale to intervene early in the pathogenic process. To

this aim, it would be helpful to have reliable biomarkers or

imaging techniques to identify patients, which are likely to

benefit from mitochondria-based strategies.
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